Your browser doesn't support javascript.
loading
Charge-induced chemical dynamics in glycine probed with time-resolved Auger electron spectroscopy.
Schwickert, David; Ruberti, Marco; Kolorenc, Premysl; Przystawik, Andreas; Skruszewicz, Slawomir; Sumfleth, Malte; Braune, Markus; Bocklage, Lars; Carretero, Luis; Czwalinna, Marie Kristin; Diaman, Dian; Düsterer, Stefan; Kuhlmann, Marion; Palutke, Steffen; Röhlsberger, Ralf; Rönsch-Schulenburg, Juliane; Toleikis, Sven; Usenko, Sergey; Viefhaus, Jens; Vorobiov, Anton; Martins, Michael; Kip, Detlef; Averbukh, Vitali; Marangos, Jon P; Laarmann, Tim.
Affiliation
  • Schwickert D; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Ruberti M; Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom.
  • Kolorenc P; Charles University, Faculty of Mathematics and Physics, V Holesovickach 2, 180 00 Praha 8, Czech Republic.
  • Przystawik A; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Skruszewicz S; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Sumfleth M; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Braune M; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Carretero L; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Czwalinna MK; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Diaman D; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Düsterer S; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Kuhlmann M; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Palutke S; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Rönsch-Schulenburg J; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Toleikis S; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Usenko S; European XFEL GmbH, Holzkoppel 4, 22869 Schenefeld, Germany.
  • Viefhaus J; Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Straße 15, 12489 Berlin, Germany.
  • Vorobiov A; Faculty of Electrical Engineering, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany.
  • Martins M; Department of Physics, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
  • Kip D; Faculty of Electrical Engineering, Helmut Schmidt University, Holstenhofweg 85, 22043 Hamburg, Germany.
  • Averbukh V; Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom.
  • Marangos JP; Department of Physics, Imperial College London, Prince Consort Road, London SW7 2AZ, United Kingdom.
Struct Dyn ; 9(6): 064301, 2022 Nov.
Article in En | MEDLINE | ID: mdl-36389279
ABSTRACT
In the present contribution, we use x-rays to monitor charge-induced chemical dynamics in the photoionized amino acid glycine with femtosecond time resolution. The outgoing photoelectron leaves behind the cation in a coherent superposition of quantum mechanical eigenstates. Delayed x-ray pulses track the induced coherence through resonant x-ray absorption that induces Auger decay. Temporal modulation of the Auger electron signal correlated with specific ions is observed, which is governed by the initial electronic coherence and subsequent vibronic coupling to nuclear degrees of freedom. In the time-resolved x-ray absorption measurement, we monitor the time-frequency spectra of the resulting many-body quantum wave packets for a period of 175 fs along different reaction coordinates. Our experiment proves that by measuring specific fragments associated with the glycine dication as a function of the pump-probe delay, one can selectively probe electronic coherences at early times associated with a few distinguishable components of the broad electronic wave packet created initially by the pump pulse in the cation. The corresponding coherent superpositions formed by subsets of electronic eigenstates and evolving along parallel dynamical pathways show different phases and time periods in the range of ( - 0.3 ± 0.1 ) π ≤ ϕ ≤ ( 0.1 ± 0.2 ) π and 18.2 - 1.4 + 1.7 ≤ T ≤ 23.9 - 1.1 + 1.2 fs. Furthermore, for long delays, the data allow us to pinpoint the driving vibrational modes of chemical dynamics mediating charge-induced bond cleavage along different reaction coordinates.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Struct Dyn Year: 2022 Document type: Article Affiliation country: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Struct Dyn Year: 2022 Document type: Article Affiliation country: Germany