Your browser doesn't support javascript.
loading
Active microbial arsenic methylation in saline-alkaline paddy soil.
Liu, Jing; Ye, Li; Jing, Chuanyong.
Affiliation
  • Liu J; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
  • Ye L; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
  • Jing C; Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Electronic address: cyjing@rcees.ac.cn.
Sci Total Environ ; 865: 161077, 2023 Mar 20.
Article in En | MEDLINE | ID: mdl-36572312
ABSTRACT
Seawater rice has been cultivated to ensure food security. The salt-tolerant rice strains are resistant to saline and alkali but may be vulnerable to elevated arsenic (As) near coastal regions. Herein, the saline-alkaline paddy soil was incubated with natural irrigation river for three months to explore the mobility and transformation of As. The incubation results showed that 65 ± 1.2 % solid-bound As(V) was reduced to As(III) within two weeks with the release of As(III) to porewater. The dissolved As(III) was methylated after two weeks, resulting in dimethyl arsenate (DMA) as the dominant As species (87 %-100 %). The elevated As methylation was attributed to the most abundant arsenite methyltransferase gene (arsM) (4.1-10.4 × 107/g dry soil), over three orders of magnitude higher than As redox-related genes. The analysis of arsM operational taxonomic units (OTUs) suggested the highest sequence similarity to Proteobacteria (25.7-39.5 %), Actinobacteria (24.9-30.5 %), Gemmatimonadetes (7.5-11.9 %), Basidiomycota (5.1-12.5 %), and Chloroflexi (4.1-8.7 %). Specifically, Chloroflexi and Actinobacteria are salt-tolerant bacteria, probably responsible for As methylation. The As in grain was within a safe regulatory level, and the dominance of methylated As in porewater did not enhance its accumulation in rice grains.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Arsenic / Oryza / Soil Pollutants / Arsenites Language: En Journal: Sci Total Environ Year: 2023 Document type: Article Affiliation country: China Country of publication: HOLANDA / HOLLAND / NETHERLANDS / NL / PAISES BAJOS / THE NETHERLANDS

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Arsenic / Oryza / Soil Pollutants / Arsenites Language: En Journal: Sci Total Environ Year: 2023 Document type: Article Affiliation country: China Country of publication: HOLANDA / HOLLAND / NETHERLANDS / NL / PAISES BAJOS / THE NETHERLANDS