Your browser doesn't support javascript.
loading
Hydrogen peroxide-induced oxidative stress promotes expression of CXCL15/Lungkine mRNA in a MEK/ERK-dependent manner in fibroblast-like synoviocytes derived from mouse temporomandibular joint.
Asanuma, Kanna; Yokota, Seiji; Chosa, Naoyuki; Kamo, Masaharu; Ibi, Miho; Mayama, Hisayo; Irié, Tarou; Satoh, Kazuro; Ishisaki, Akira.
Affiliation
  • Asanuma K; Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Shiwa-gun, Iwate-ken 028-3694, Japan; Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, 1-3-27 Chuo-dori, Morioka-shi, Iwate-
  • Yokota S; Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Shiwa-gun, Iwate-ken 028-3694, Japan.
  • Chosa N; Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Shiwa-gun, Iwate-ken 028-3694, Japan.
  • Kamo M; Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Shiwa-gun, Iwate-ken 028-3694, Japan.
  • Ibi M; Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Shiwa-gun, Iwate-ken 028-3694, Japan.
  • Mayama H; Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, 1-3-27 Chuo-dori, Morioka-shi, Iwate-ken 020-8505, Japan.
  • Irié T; Division of Anatomical and Cellular Pathology, Department of Pathology, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Shiwa-gun, Iwate-ken 028-3694, Japan.
  • Satoh K; Division of Orthodontics, Department of Developmental Oral Health Science, Iwate Medical University, 1-3-27 Chuo-dori, Morioka-shi, Iwate-ken 020-8505, Japan.
  • Ishisaki A; Division of Cellular Biosignal Sciences, Department of Biochemistry, Iwate Medical University, 1-1-1 Idai-dori, Yahaba-cho, Shiwa-gun, Iwate-ken 028-3694, Japan. Electronic address: aishisa@iwate-med.ac.jp.
J Oral Biosci ; 65(1): 97-103, 2023 03.
Article in En | MEDLINE | ID: mdl-36584898
ABSTRACT

OBJECTIVES:

Temporomandibular joint osteoarthritis (TMJ-OA) is a multifactorial disease caused by inflammation and oxidative stress. It has been hypothesized that mechanical stress-induced injury of TMJ tissues induces the generation of reactive oxygen species (ROS), such as hydroxyl radical (OH∙), in the synovial fluid (SF). In general, the overproduction of ROS contributes to synovial inflammation and dysfunction of the subchondral bone in OA. However, the mechanism by which ROS-injured synoviocytes recruit inflammatory cells to TMJ-OA lesions remains unclear.

METHODS:

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was performed to evaluate the mRNA expression of chemoattractant molecules. The phosphorylation levels of intracellular signaling molecules were evaluated using western blot analysis.

RESULTS:

Hydrogen peroxide (H2O2) treatment significantly promoted mRNA expression of neutrophil chemoattractant CXCL15/Lungkine in a dose-dependent manner (100-500 µM) in fibroblast-like synoviocytes (FLSs) derived from mouse TMJ. H2O2 (500 µM) significantly upregulated the phosphorylation of extracellular signal-regulated kinase (ERK)1 and ERK2 in FLSs. Intriguingly, the mitogen-activated protein (MAP)/ERK kinase (MEK) inhibitor U0126 (10 µM) nullified H2O2-induced increase in CXCL15/Lungkine mRNA expression. Additionally, H2O2 (500 µM) administration significantly upregulated OH∙ production in FLSs, as assessed by live-cell permeant fluorescent probe targeted against OH∙ under fluorescence microscopy. Furthermore, the ROS inhibitor N-acetyl-l-cysteine (5 mM) partially but significantly reversed H2O2-mediated phosphorylation of ERK1/2.

CONCLUSIONS:

H2O2-induced oxidative stress promoted the expression of CXCL15/Lungkine mRNA in a MEK/ERK-dependent manner in mouse TMJ-derived FLSs, suggesting that FLSs recruit neutrophils to TMJ-OA lesions through the production of CXCL15/Lungkine and exacerbate the local inflammatory response.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Osteoarthritis / Synoviocytes Limits: Animals Language: En Journal: J Oral Biosci Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Osteoarthritis / Synoviocytes Limits: Animals Language: En Journal: J Oral Biosci Year: 2023 Document type: Article