Your browser doesn't support javascript.
loading
Bridging physiological and perceptual views of autism by means of sampling-based Bayesian inference.
Echeveste, Rodrigo; Ferrante, Enzo; Milone, Diego H; Samengo, Inés.
Affiliation
  • Echeveste R; Research Institute for Signals, Systems, and Computational Intelligence sinc(i) (FICH-UNL/CONICET), Santa Fe, Argentina.
  • Ferrante E; Research Institute for Signals, Systems, and Computational Intelligence sinc(i) (FICH-UNL/CONICET), Santa Fe, Argentina.
  • Milone DH; Research Institute for Signals, Systems, and Computational Intelligence sinc(i) (FICH-UNL/CONICET), Santa Fe, Argentina.
  • Samengo I; Medical Physics Department and Balseiro Institute (CNEA-UNCUYO/CONICET), Bariloche, Argentina.
Netw Neurosci ; 6(1): 196-212, 2022 Feb.
Article in En | MEDLINE | ID: mdl-36605888
Theories for autism spectrum disorder (ASD) have been formulated at different levels, ranging from physiological observations to perceptual and behavioral descriptions. Understanding the physiological underpinnings of perceptual traits in ASD remains a significant challenge in the field. Here we show how a recurrent neural circuit model that was optimized to perform sampling-based inference and displays characteristic features of cortical dynamics can help bridge this gap. The model was able to establish a mechanistic link between two descriptive levels for ASD: a physiological level, in terms of inhibitory dysfunction, neural variability, and oscillations, and a perceptual level, in terms of hypopriors in Bayesian computations. We took two parallel paths-inducing hypopriors in the probabilistic model, and an inhibitory dysfunction in the network model-which lead to consistent results in terms of the represented posteriors, providing support for the view that both descriptions might constitute two sides of the same coin.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Netw Neurosci Year: 2022 Document type: Article Affiliation country: Argentina Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Netw Neurosci Year: 2022 Document type: Article Affiliation country: Argentina Country of publication: United States