Your browser doesn't support javascript.
loading
Hydrogel with Robust Adhesion in Various Liquid Environments by Electrostatic-Induced Hydrophilic and Hydrophobic Polymer Chains Migration and Rearrangement.
Fu, Chao; Shen, Luli; Liu, Luqi; Tao, Ping; Zhu, Lijing; Zeng, Zhixiang; Ren, Tianhui; Wang, Gang.
Affiliation
  • Fu C; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Thin Film and Microfabrication Technology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
  • Shen L; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
  • Liu L; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
  • Tao P; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
  • Zhu L; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
  • Zeng Z; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
  • Ren T; Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China.
  • Wang G; School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Key Laboratory of Thin Film and Microfabrication Technology, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Adv Mater ; 35(15): e2211237, 2023 Apr.
Article in En | MEDLINE | ID: mdl-36662770
ABSTRACT
Hydrogels with wet adhesion are promising interfacial adhesive materials; however, their adhesion in water, oil, or organic solvents remains a major challenge. To address this, a pressure-sensitive P(AAm-co-C18 )/PTA-Fe hydrogel is fabricated, which exhibits robust adhesion to various substrates in both aqueous solutions and oil environments. It is demonstrated that the key to wet adhesion under liquid conditions is the removal of the interfacial liquid, which can be achieved through rational molecular composition regulation. By complexing with hydrophilic polymer networks, phosphotungstic acid (PTA) is introduced into the hydrogel network as a physical cross-linker and anchor point to improve the cohesion strength and drive the migration of polymer chains. The migration and rearrangement of hydrophilic and hydrophobic polymer chains on the hydrogel surface are induced by the electrostatic interactions of Fe3+ , which create a surface with interfacial water- and oil-removing properties. By co-regulating the hydrophilic and hydrophobic polymer chains, the P(AAm-co-C18 )/PTA-Fe hydrogel is able to act as a pressure-sensitive adhesive under water and oils with adhesion strength of 92.6 and 90.0 kPa, respectively. It is anticipated that this regulation strategy for polymer chains will promote the development of wet adhesion hydrogels, which can have a wide range of applications.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2023 Document type: Article