Your browser doesn't support javascript.
loading
Microbiome analysis of raw honey reveals important factors influencing the bacterial and fungal communities.
Xiong, Zirui Ray; Sogin, Jonathan H; Worobo, Randy W.
Affiliation
  • Xiong ZR; Department of Food Science, Cornell University, Ithaca, NY, United States.
  • Sogin JH; Department of Food Science, Cornell University, Ithaca, NY, United States.
  • Worobo RW; Department of Food Science, Cornell University, Ithaca, NY, United States.
Front Microbiol ; 13: 1099522, 2022.
Article in En | MEDLINE | ID: mdl-36713191
Raw honeys contain diverse microbial communities. Previous studies have focused on isolating bacteria and fungi that are culturable, while missing a large proportion of the microbial community due to culture-based constraints. This study utilized next-generation sequencing (NGS) to analyze the composition of microorganisms in raw honey; these data can reveal environmental and physicochemical variables that are associated with different microbial communities. To examine the microbial composition (bacteria and fungi) of raw honey and analyze its association with physicochemical properties, four types of honey (monofloral, wildflower, manuka, and feral; n total = 36) were analyzed via amplicon metagenomics. The analyzed honey samples had relatively similar bacterial communities but more distinct and diverse fungal communities. Honey type was determined as a significant factor influencing alpha and beta diversity metrics of bacterial and fungal communities. For the bacterial communities, titratable acidity (TA) was associated with community richness and diversity. For the fungal communities, Brix, TA, and color were associated with community richness, while water activity and color were associated with community diversity. Additionally, important bacterial and fungal amplicon sequence variants (ASVs) that influenced the overall community were identified. Results from this study provide important insights into the microbial communities associated with different types of raw honey, which could improve our understanding of microbial dynamics in beehives, improve honey production, and prevent honeybee disease.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Front Microbiol Year: 2022 Document type: Article Affiliation country: United States Country of publication: Switzerland

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Front Microbiol Year: 2022 Document type: Article Affiliation country: United States Country of publication: Switzerland