Your browser doesn't support javascript.
loading
Using 'sentinel' plants to improve early detection of invasive plant pathogens.
Lovell-Read, Francesca A; Parnell, Stephen; Cunniffe, Nik J; Thompson, Robin N.
Affiliation
  • Lovell-Read FA; Mathematical Institute, University of Oxford, Oxford, United Kingdom.
  • Parnell S; Warwick Crop Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom.
  • Cunniffe NJ; Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
  • Thompson RN; Mathematics Institute, University of Warwick, Coventry, United Kingdom.
PLoS Comput Biol ; 19(2): e1010884, 2023 02.
Article in En | MEDLINE | ID: mdl-36730434
Infectious diseases of plants present an ongoing and increasing threat to international biosecurity, with wide-ranging implications. An important challenge in plant disease management is achieving early detection of invading pathogens, which requires effective surveillance through the implementation of appropriate monitoring programmes. However, when monitoring relies on visual inspection as a means of detection, surveillance is often hindered by a long incubation period (delay from infection to symptom onset) during which plants may be infectious but not displaying visible symptoms. 'Sentinel' plants-alternative susceptible host species that display visible symptoms of infection more rapidly-could be introduced to at-risk populations and included in monitoring programmes to act as early warning beacons for infection. However, while sentinel hosts exhibit faster disease progression and so allow pathogens to be detected earlier, this often comes at a cost: faster disease progression typically promotes earlier onward transmission. Here, we construct a computational model of pathogen transmission to explore this trade-off and investigate how including sentinel plants in monitoring programmes could facilitate earlier detection of invasive plant pathogens. Using Xylella fastidiosa infection in Olea europaea (European olive) as a current high profile case study, for which Catharanthus roseus (Madagascan periwinkle) is a candidate sentinel host, we apply a Bayesian optimisation algorithm to determine the optimal number of sentinel hosts to introduce for a given sampling effort, as well as the optimal division of limited surveillance resources between crop and sentinel plants. Our results demonstrate that including sentinel plants in monitoring programmes can reduce the expected prevalence of infection upon outbreak detection substantially, increasing the feasibility of local outbreak containment.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Olea / Sentinel Species Type of study: Diagnostic_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Language: En Journal: PLoS Comput Biol Journal subject: BIOLOGIA / INFORMATICA MEDICA Year: 2023 Document type: Article Affiliation country: United kingdom Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Olea / Sentinel Species Type of study: Diagnostic_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Language: En Journal: PLoS Comput Biol Journal subject: BIOLOGIA / INFORMATICA MEDICA Year: 2023 Document type: Article Affiliation country: United kingdom Country of publication: United States