Your browser doesn't support javascript.
loading
TEMPRANILLO homologs in apple regulate flowering time in the woodland strawberry Fragaria vesca.
Dejahang, Ata; Maghsoudi, Naeimeh; Mousavi, Amir; Farsad-Akhtar, Nader; Matias-Hernandez, Luis; Pelaz, Soraya; Folta, Kevin; Mahna, Nasser.
Affiliation
  • Dejahang A; Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
  • Maghsoudi N; Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
  • Mousavi A; Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
  • Farsad-Akhtar N; Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
  • Matias-Hernandez L; Department of Plant Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
  • Pelaz S; Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Valles), 08193, Barcelona, Spain.
  • Folta K; Biotech Tricopharming Research, 08018, Barcelona, Spain.
  • Mahna N; Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Bellaterra (Cerdanyola del Valles), 08193, Barcelona, Spain.
Sci Rep ; 13(1): 1968, 2023 02 03.
Article in En | MEDLINE | ID: mdl-36737641
ABSTRACT
The long juvenile period of fruit trees makes their breeding costly and time-consuming. Therefore, flowering time engineering and shortening the juvenile phase have become a breeding priority for the genetic improvement of fruit tree crops. Many economically valuable fruit trees belong to the Rosaceae family including apples and strawberries. TEMPRANILLO (TEM) acts as a key player in flowering time control through inhibiting FT function. Two genes with high sequence similarity with the Arabidopsis TEM genes were isolated from apple (Malus domestica). Due to the complexity of carrying out functional studies in apple, we characterized their function in woodland strawberry as well as their expression in apple. The expression of MdTEM genes in apple tissues from juvenile plants was dramatically higher than that in the tissues from adult trees. In woodland strawberry, the overexpression of MdTEM genes down-regulated FvFT1, FvGA3OX1, and FvGA3OX2 genes in strawberry. The MdTEM-overexpressing lines exhibited delayed flowering, in terms of days to flowering and the number of leaves at flowering. While, RNAi-mediated silencing of TEM resulted in five days earlier flowering, with a lower number of leaves, a higher trichome density, and in some cases, caused in vitro flowering. According to these results and in silico analyses, it can be concluded that MdTEM1 and MdTEM2 can be considered as orthologs of FvTEM and probably AtTEM genes, which play an important role in regulating the juvenile phase and flowering time through regulating FT and GA biosynthetic pathway.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Malus / Fragaria Language: En Journal: Sci Rep Year: 2023 Document type: Article Affiliation country: Iran

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Malus / Fragaria Language: En Journal: Sci Rep Year: 2023 Document type: Article Affiliation country: Iran
...