Your browser doesn't support javascript.
loading
Construction of Covalent Organic Framework Capsule-Based Nanoreactor for Sensitive Glucose Detection.
Zhong, Chao; Li, Guorong; Tian, Wenchang; Ouyang, Dan; Ji, Yin; Cai, Zongwei; Lin, Zian.
Affiliation
  • Zhong C; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China.
  • Li G; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China.
  • Tian W; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China.
  • Ouyang D; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China.
  • Ji Y; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China.
  • Cai Z; State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong SAR, P.R. China.
  • Lin Z; Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108 China.
Article in En | MEDLINE | ID: mdl-36786379
Enzyme immobilization is critical to boosting its application in various areas. Covalent organic frameworks (COFs) are ideal hosts for enzyme immobilization due to their porous and predesignable structures. Nevertheless, the construction of COFs-based enzyme immobilization systems with high activity via existing immobilization methods (including covalent linkages and channel entrapment) remains a considerable challenge. Herein, a versatile approach was introduced to encapsulate enzymes within hollow COF capsule (named enzyme@COF) using metal-organic frameworks (including ZPF-1(C8H11N4O4.5Zn), ZIF-8(C8H10N4Zn), and ZIF-90(C8H6N4O2Zn)) as sacrificial templates. The obtained porous COF capsule could not only facilitate the efficient mass transfer of enzymatic reactions but also protect enzymes against the incompatible conditions, resulting in enhanced activity and stability of the encapsulated enzymes. Moreover, this approach offered an opportunity to spatially organize multienzymes in COF capsule to construct enzyme cascade system. For instance, glucose oxidase (GOx) and cytochrome c (Cyt c) were coencapsulated within COF capsule to construct GOx-Cyt c cascade. The integration of GOx and Cyt c within COF capsule achieved ∼1.6-fold improvement in catalytic activity than that of free enzymes and the resultant GOx-Cyt c@COF was successfully adopted as a nanoreactor for the sensitive determination of glucose in serum. This work provided a new insight into the design of COFs-based enzyme immobilization systems.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Diagnostic_studies Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2023 Document type: Article Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Diagnostic_studies Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2023 Document type: Article Country of publication: United States