Your browser doesn't support javascript.
loading
Dinitrogen Complexes of Cobalt(-I) Supported by Rare-Earth Metal-Based Metalloligands.
Zhang, Yun; Pan, Xiaowei; Xu, Min; Xiong, Chunyan; Hong, Dongjing; Fang, Huayi; Cui, Peng.
Affiliation
  • Zhang Y; Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China.
  • Pan X; School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China.
  • Xu M; Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China.
  • Xiong C; Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China.
  • Hong D; Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China.
  • Fang H; School of Materials Science and Engineering, Tianjin Key Lab for Rare Earth Materials and Applications, Nankai University, No. 38 Tongyan Road, Haihe Education Park, Tianjin 300350, P. R. China.
  • Cui P; Key Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, 189 South Jiuhua Road, Wuhu, Anhui 241002, P. R. China.
Inorg Chem ; 62(9): 3836-3846, 2023 Mar 06.
Article in En | MEDLINE | ID: mdl-36800534
ABSTRACT
Sequential reactions of heptadentate phosphinoamine LH3 with rare-earth metal tris-alkyl precursor (Me3SiCH2)3Ln(THF)2 (Ln = Sc, Lu, Yb, Y, Gd) and a low-valent cobalt complex (Ph3P)3CoI afforded rare-earth metal-supported cobalt iodide complexes. Reduction of these iodide complexes under N2 allowed the isolation of the first series of dinitrogen complexes of Co(-I) featuring dative Co(-I) → Ln (Ln = Sc, Lu, Yb, Y, Gd) bonding interactions. These compounds were characterized by multinuclear NMR spectroscopy, X-ray diffraction analysis, electrochemistry, and computational studies. The correlation of N-N vibrational frequencies with the pKa of [Ln(H2O)6]3+ showed that strongest activation of N2 was achieved with the least Lewis acidic Gd(III) ion. Interestingly, these Ln-Co-N2 complexes catalyzed silylation of N2 in the presence of KC8 and Me3SiCl with turnover numbers (TONs) up to 16, where the lutetium-supported Co(-I) complex showed the highest activity within the series. The role of the Lewis acidic Ln(III) was crucial to achieve catalytic turnovers and tunable reactivity toward N2 functionalization.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Inorg Chem Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Inorg Chem Year: 2023 Document type: Article