Your browser doesn't support javascript.
loading
Simultaneous measurement of humidity and temperature based on fiber-tip microcantilever cascaded with fiber Bragg grating.
Opt Express ; 31(5): 8738-8747, 2023 Feb 27.
Article in En | MEDLINE | ID: mdl-36859983
ABSTRACT
We demonstrated a hybrid sensor of fiber Bragg grating (FBG) and Fabry-Perot interferometer (FPI) based on fiber-tip microcantilever for simultaneous measurement of temperature and humidity. The FPI was developed using femtosecond (fs) laser-induced two-photon polymerization to print the polymer microcantilever at the end of a single-mode fiber, achieving a humidity sensitivity of 0.348 nm/%RH (40% to 90%, when temperature = 25 °C ± 0.1 °C), and a temperature sensitivity of -0.356 nm/°C (25 to 70 °C, when RH% = 40% ± 1%). The FBG was line-by-line inscribed in the fiber core by fs laser micromachining, with a temperature sensitivity of 0.012 nm/ °C (25 to 70 °C, when RH% = 40% ± 1%). As the shift of FBG-peak on the reflection spectra is only sensitive to temperature rather than humidity, the ambient temperature can be directly measured by the FBG. The output of FBG can also be utilized as temperature compensation for FPI-based humidity measurement. Thus, the measured result of relative humidity can be decoupled from the total shift of FPI-dip, achieving the simultaneous measurement of humidity and temperature. Gaining the advantages of high sensitivity, compact size, easy packaging, and dual parameter measurement, this all-fiber sensing probe is anticipated to be applied as the key component for various applications involving the simultaneous measurement of temperature and humidity.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Opt Express Journal subject: OFTALMOLOGIA Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Opt Express Journal subject: OFTALMOLOGIA Year: 2023 Document type: Article
...