Your browser doesn't support javascript.
loading
Prediction of voluntary movements of the upper extremities by resting state-brain regional glucose metabolism in patients with chronic severe brain injury: A pilot study.
Yamaki, Tomohiro; Hatakeyama, Naoya; Murayama, Takemi; Funakura, Mika; Hara, Takuya; Onodera, Shinji; Ito, Daisuke; Yakufujiang, Maidinamu; Odaki, Masaru; Oka, Nobuo; Kobayashi, Shigeki.
Affiliation
  • Yamaki T; Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.
  • Hatakeyama N; Division of Radiology, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.
  • Murayama T; Division of Rehabilitation, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.
  • Funakura M; Division of Rehabilitation, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.
  • Hara T; Division of Rehabilitation, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.
  • Onodera S; Division of Rehabilitation, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.
  • Ito D; Division of Radiology, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.
  • Yakufujiang M; Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.
  • Odaki M; Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.
  • Oka N; Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.
  • Kobayashi S; Division of Neurosurgery, Rehabilitation Center for Traumatic Apallics Chiba, National Agency for Automotive Safety and Victims' Aid, 3-30-1 Isobe, Mihama-ku, Chiba, 261-0012, Japan.
Hum Brain Mapp ; 44(8): 3158-3167, 2023 06 01.
Article in En | MEDLINE | ID: mdl-36929226
ABSTRACT
Confirmation of the exact voluntary movements of patients with disorder of consciousness following severe traumatic brain injury (TBI) is difficult because of the associated communication disturbances. In this pilot study, we investigated whether regional brain glucose metabolism assessed by 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) at rest could predict voluntary movement in severe TBI patients, particularly those with sufficient upper limb capacity to use communication devices. We visually and verbally instructed patients to clasp or open their hands. After video capture, three independent rehabilitation therapists determined whether the patients' movements were voluntary or involuntary. The results were compared with the standardized uptake value in the primary motor cortex, referring to the Penfield's homunculus, by resting state by FDG-PET imaged 1 year prior. Results showed that glucose uptake in the left (p = 0.0015) and right (p = 0.0121) proximal limb of the primary motor cortex, based on Penfield's homunculus on cerebral cartography, may reflect contralateral voluntary movement. Receiver operating characteristic curve analysis showed that a mean cutoff standardized uptake value of 5.47 ± 0.08 provided the best sensitivity and specificity for differentiating between voluntary and involuntary movements in each area. FDG-PET may be a useful and robust biomarker for predicting long-term recovery of motor function in severe TBI patients with disorders of consciousness.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain Injury, Chronic / Brain Injuries, Traumatic Type of study: Prognostic_studies / Risk_factors_studies Limits: Humans Language: En Journal: Hum Brain Mapp Journal subject: CEREBRO Year: 2023 Document type: Article Affiliation country: Japan

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain Injury, Chronic / Brain Injuries, Traumatic Type of study: Prognostic_studies / Risk_factors_studies Limits: Humans Language: En Journal: Hum Brain Mapp Journal subject: CEREBRO Year: 2023 Document type: Article Affiliation country: Japan