Your browser doesn't support javascript.
loading
Growth substrates alter aboveground plant microbial and metabolic properties thereby influencing insect herbivore performance.
Yuan, Jun; Wen, Tao; Yang, Shengdie; Zhang, Chao; Zhao, Mengli; Niu, Guoqing; Xie, Penghao; Liu, Xiaoyu; Zhao, Xinyuan; Shen, Qirong; Bezemer, T Martijn.
Affiliation
  • Yuan J; The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
  • Wen T; The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
  • Yang S; The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
  • Zhang C; The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
  • Zhao M; The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
  • Niu G; The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
  • Xie P; The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
  • Liu X; The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
  • Zhao X; The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China.
  • Shen Q; The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, 210095, China. she
  • Bezemer TM; Institute of Biology, Above-Belowground Interactions group, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands.
Sci China Life Sci ; 66(8): 1728-1741, 2023 08.
Article in En | MEDLINE | ID: mdl-36932313
ABSTRACT
The gut microbiome of plant-eaters is affected by the food they eat, but it is currently unclear how the plant metabolome and microbiome are influenced by the substrate the plant grows in and how this subsequently impacts the feeding behavior and gut microbiomes of insect herbivores. Here, we use Plutella xylostella caterpillars and show that the larvae prefer leaves of cabbage plants growing in a vermiculite substrate to those from plants growing in conventional soil systems. From a plant metabolomics analysis, we identified 20 plant metabolites that were related to caterpillar feeding performance. In a bioassay, the effects of these plant metabolites on insects' feeding were tested. Nitrate and compounds enriched with leaves of soilless cultivation promoted the feeding of insects, while compounds enriched with leaves of plants growing in natural soil decreased feeding. Several microbial groups (e.g., Sporolactobacillus, Haliangium) detected inside the plant correlated with caterpillar feeding performance and other microbial groups, such as Ramlibacter and Methylophilus, correlated with the gut microbiome. Our results highlight the role of growth substrates on the food metabolome and microbiome and on the feeding performance and the gut microbiome of plant feeders. It illustrates how belowground factors can influence the aboveground properties of plant-animal systems, which has important implications for plant growth and pest control.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Herbivory / Insecta Type of study: Prognostic_studies Limits: Animals Language: En Journal: Sci China Life Sci Journal subject: BIOLOGIA / CIENCIA Year: 2023 Document type: Article Affiliation country: China Country of publication: CHINA / CN / REPUBLIC OF CHINA

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Herbivory / Insecta Type of study: Prognostic_studies Limits: Animals Language: En Journal: Sci China Life Sci Journal subject: BIOLOGIA / CIENCIA Year: 2023 Document type: Article Affiliation country: China Country of publication: CHINA / CN / REPUBLIC OF CHINA