Your browser doesn't support javascript.
loading
Integrated-gut-liver-on-a-chip platform as an in vitro human model of non-alcoholic fatty liver disease.
Yang, Jiandong; Hirai, Yoshikazu; Iida, Kei; Ito, Shinji; Trumm, Marika; Terada, Shiho; Sakai, Risako; Tsuchiya, Toshiyuki; Tabata, Osamu; Kamei, Ken-Ichiro.
Affiliation
  • Yang J; Department of Micro Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
  • Hirai Y; Department of Micro Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan. hirai@me.kyoto-u.ac.jp.
  • Iida K; Department of Mechanical Engineering and Science, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan. hirai@me.kyoto-u.ac.jp.
  • Ito S; Medical Research Support Center, Graduate School of Medicine, Kyoto University, Yoshida Konoe-cho, Kyoto, 606-8501, Japan.
  • Trumm M; Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
  • Terada S; Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashiosaka, Osaka, 577-8502, Japan.
  • Sakai R; Department of Micro Engineering, Kyoto University, Kyotodaigaku-Katsura, Nishikyo-ku, Kyoto, 615-8540, Japan.
  • Tsuchiya T; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
  • Tabata O; Institute for Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, 69120, Germany.
  • Kamei KI; Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
Commun Biol ; 6(1): 310, 2023 03 23.
Article in En | MEDLINE | ID: mdl-36959276
ABSTRACT
Non-alcoholic fatty liver disease (NAFLD) afflicts a significant percentage of the population; however, no effective treatments have yet been established because of the unsuitability of in vitro assays and animal experimental models. Here, we present an integrated-gut-liver-on-a-chip (iGLC) platform as an in vitro human model of the gut-liver axis (GLA) by co-culturing human gut and liver cell lines interconnected via microfluidics in a closed circulation loop, for the initiation and progression of NAFLD by treatment with free fatty acids (FFAs) for 1 and 7 days, respectively. Co-cultured Caco-2 gut-mimicking cells and HepG2 hepatocyte-like cells demonstrate the protective effects from apoptosis against FFAs treatment, whereas mono-cultured cells exhibit induced apoptosis. Phenotype and gene expression analyses reveal that the FFAs-treated gut and liver cells accumulated intracellular lipid droplets and show an increase in gene expression associated with a cellular response to copper ions and endoplasmic reticulum stress. As an in vitro human GLA model, the iGLC platform may serve as an alternative to animal experiments for investigating the mechanisms of NAFLD.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Non-alcoholic Fatty Liver Disease Limits: Animals / Humans Language: En Journal: Commun Biol Year: 2023 Document type: Article Affiliation country: Japan

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Non-alcoholic Fatty Liver Disease Limits: Animals / Humans Language: En Journal: Commun Biol Year: 2023 Document type: Article Affiliation country: Japan
...