Electrochemistry and Stability of 1,1'-Ferrocene-Bisphosphonates.
ACS Omega
; 8(12): 10899-10905, 2023 Mar 28.
Article
in En
| MEDLINE
| ID: mdl-37008129
Here, we investigate the electrochemical properties and stability of 1,1'-ferrocene-bisphosphonates in aqueous solutions. 31P NMR spectroscopy enables to track decomposition at extreme pH conditions revealing partial disintegration of the ferrocene core in air and under an argon atmosphere. ESI-MS indicates the decomposition pathways to be different in aqueous H3PO4, phosphate buffer, or NaOH solutions. Cyclovoltammetry exhibits completely reversible redox chemistry of the evaluated bisphosphonates, sodium 1,1'-ferrocene-bis(phosphonate) (3) and sodium 1,1'-ferrocene-bis(methylphosphonate) (8), from pH 1.2 to pH 13. Both the compounds feature freely diffusing species as determined using the Randles-Sevcik analysis. The activation barriers determined by rotating disk electrode measurements revealed asymmetry for oxidation and reduction. The compounds are tested in a hybrid flow battery using anthraquinone-2-sulfonate as the counterside, yielding only moderate performance.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
ACS Omega
Year:
2023
Document type:
Article
Affiliation country:
Austria
Country of publication:
United States