Your browser doesn't support javascript.
loading
Large piezoelectric response in a Jahn-Teller distorted molecular metal halide.
Wang, Sasa; Khan, Asif Abdullah; Teale, Sam; Xu, Jian; Parmar, Darshan H; Zhao, Ruyan; Grater, Luke; Serles, Peter; Zou, Yu; Filleter, Tobin; Seferos, Dwight S; Ban, Dayan; Sargent, Edward H.
Affiliation
  • Wang S; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
  • Khan AA; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada.
  • Teale S; Department of Electrical and Computer Engineering, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada.
  • Xu J; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
  • Parmar DH; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
  • Zhao R; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
  • Grater L; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
  • Serles P; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Ontario, M5S 3G4, Canada.
  • Zou Y; Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada.
  • Filleter T; Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario, M5S 3E4, Canada.
  • Seferos DS; Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada.
  • Ban D; Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
  • Sargent EH; Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Ave West, Waterloo, Ontario, N2L 3G1, Canada. dban@uwaterloo.ca.
Nat Commun ; 14(1): 1852, 2023 Apr 03.
Article in En | MEDLINE | ID: mdl-37012239
Piezoelectric materials convert between mechanical and electrical energy and are a basis for self-powered electronics. Current piezoelectrics exhibit either large charge (d33) or voltage (g33) coefficients but not both simultaneously, and yet the maximum energy density for energy harvesting is determined by the transduction coefficient: d33*g33. In prior piezoelectrics, an increase in polarization usually accompanies a dramatic rise in the dielectric constant, resulting in trade off between d33 and g33. This recognition led us to a design concept: increase polarization through Jahn-Teller lattice distortion and reduce the dielectric constant using a highly confined 0D molecular architecture. With this in mind, we sought to insert a quasi-spherical cation into a Jahn-Teller distorted lattice, increasing the mechanical response for a large piezoelectric coefficient. We implemented this concept by developing EDABCO-CuCl4 (EDABCO = N-ethyl-1,4-diazoniabicyclo[2.2.2]octonium), a molecular piezoelectric with a d33 of 165 pm/V and g33 of ~2110 × 10-3 V m N-1, one that achieved thusly a combined transduction coefficient of 348 × 10-12 m3 J-1. This enables piezoelectric energy harvesting in EDABCO-CuCl4@PVDF (polyvinylidene fluoride) composite film with a peak power density of 43 µW/cm2 (at 50 kPa), the highest value reported for mechanical energy harvesters based on heavy-metal-free molecular piezoelectric.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2023 Document type: Article Affiliation country: Canada Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Nat Commun Journal subject: BIOLOGIA / CIENCIA Year: 2023 Document type: Article Affiliation country: Canada Country of publication: United kingdom