Your browser doesn't support javascript.
loading
MOFs-based Fe@YAU-101/GCE electrochemical sensor platform for highly selective detecting trace multiplex heavy metal ions.
Liang, Qian; Xiao, Wang; Zhang, Cheng; Zhu, Ding; Wang, Si-Lu; Tian, Si-Yu; Long, Tang; Yue, Er-Lin; Wang, Ji-Jiang; Hou, Xiang-Yang.
Affiliation
  • Liang Q; Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China.
  • Xiao W; Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China. Electronic address: wx2248@126.com.
  • Zhang C; Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China.
  • Zhu D; Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China.
  • Wang SL; Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China.
  • Tian SY; Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China.
  • Long T; Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China.
  • Yue EL; Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China.
  • Wang JJ; Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China.
  • Hou XY; Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Shaanxi Key Laboratory of Chemical Reaction Engineering, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, China.
Talanta ; 259: 124491, 2023 Jul 01.
Article in En | MEDLINE | ID: mdl-37023672
ABSTRACT
The construction of sensors with specific recognition functions can easily, sensitively and efficiently detect heavy metal ions, which is a demand in the field of electrochemical sensing and an important topic in the detection of environmental pollutants. An electrochemical sensor based on MOFs composites was developed for sensing of multiplex metal ions. The large surface area, adjustable porosities and channels in MOFs facilitate successful loading of sufficient quantities highly active units. The active units and pore structures of MOFs are regulated and synergetic with each other to enhance the electrochemical activity of MOFs composites. Thus, the selectivity, sensitivity and reproducibility of MOFs composites have been improved. Fortunately, after characterization, Fe@YAU-101/GCE sensor with strong signal was successfully constructed. In the presence of target metal ions in solution, the Fe@YAU-101/GCE can efficiently and synchronously identify Hg2+, Pb2+, and Cd2+. The detection limits (LOD) are 6.67 × 10-10 M(Cd2+), 3.33 × 10-10 M(Pb2+) and 1.33 × 10-8 M (Hg2+), and are superior to the permissible limits set by the National Environmental Protection Agency. The electrochemical sensor is simple without sophisticated instrumentation and testing processes, hence promising for practical applications.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Talanta Year: 2023 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Talanta Year: 2023 Document type: Article Affiliation country: China