Your browser doesn't support javascript.
loading
Quantum transports in two-dimensions with long range hopping.
Wang, Si-Si; Li, Kangkang; Dai, Yi-Ming; Wang, Hui-Hui; Zhang, Yi-Cai; Zhang, Yan-Yang.
Affiliation
  • Wang SS; School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, China.
  • Li K; School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China.
  • Dai YM; Huangpu Research and Graduate School of Guangzhou University, Guangzhou, 510700, China.
  • Wang HH; Department of Physics, Zhejiang Normal University, Jinhua, 321004, China.
  • Zhang YC; School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, China.
  • Zhang YY; School of Physics and Materials Science, Guangzhou University, Guangzhou, 510006, China.
Sci Rep ; 13(1): 5763, 2023 Apr 08.
Article in En | MEDLINE | ID: mdl-37031288
ABSTRACT
We investigate the effects of disorder and shielding on quantum transports in a two dimensional system with all-to-all long range hopping. In the weak disorder, cooperative shielding manifests itself as perfect conducting channels identical to those of the short range model, as if the long range hopping does not exist. With increasing disorder, the average and fluctuation of conductance are larger than those in the short range model, since the shielding is effectively broken and therefore long range hopping starts to take effect. Over several orders of disorder strength (until [Formula see text] times of nearest hopping), although the wavefunctions are not fully extended, they are also robustly prevented from being completely localized into a single site. Each wavefunction has several localization centers around the whole sample, thus leading to a fractal dimension remarkably smaller than 2 and also remarkably larger than 0, exhibiting a hybrid feature of localization and delocalization. The size scaling shows that for sufficiently large size and disorder strength, the conductance tends to saturate to a fixed value with the scaling function [Formula see text], which is also a marginal phase between the typical metal ([Formula see text]) and insulating phase ([Formula see text]). The all-to-all coupling expels one isolated but extended state far out of the band, whose transport is extremely robust against disorder due to absence of backscattering. The bond current picture of this isolated state shows a quantum version of short circuit through long hopping.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2023 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Rep Year: 2023 Document type: Article Affiliation country: China