Your browser doesn't support javascript.
loading
A potential protective role of the nuclear receptor-related factor 1 (Nurr1) in multiple sclerosis motor cortex: a neuropathological study.
Pansieri, Jonathan; Pisa, Marco; Yates, Richard L; Esiri, Margaret M; DeLuca, Gabriele C.
Affiliation
  • Pansieri J; Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
  • Pisa M; Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
  • Yates RL; Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
  • Esiri MM; Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
  • DeLuca GC; Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK.
Brain Commun ; 5(2): fcad072, 2023.
Article in En | MEDLINE | ID: mdl-37056475
ABSTRACT
Cerebral cortical inflammation and neurodegeneration are hallmark pathological features of multiple sclerosis that contribute to irreversible neurological disability. While the reason for nerve cell death is unknown, the pathogenic inflammatory role of infiltrating lymphocytes is likely an important contributor. The nuclear receptor-related factor 1 counteracts inflammation in animal models of multiple sclerosis, and protects against neuronal loss in other neurodegenerative disorders, but its expression in post-mortem multiple sclerosis tissue is not known. This study aims to investigate the nuclear receptor-related factor 1 expression in multiple sclerosis motor cortex and evaluate its relationship with motor cortical pathology. To accomplish this, an autopsy cohort of pathologically confirmed multiple sclerosis (n = 46), and control (n = 11) cases was used, where the nuclear receptor-related factor 1 expression was related to neuronal and lymphocytic densities. Motor cortical nuclear receptor-related factor 1 was overexpressed in multiple sclerosis compared to control cases. Increased nuclear receptor-related factor 1 expression positively associated with neuronal densities, especially when present in nucleus of neurons, and associated with decreased CD8+ cytotoxic lymphocyte density. Our findings expand the current knowledge on nuclear receptor-related factor 1 in neurological diseases, and support the hypothesis that nuclear receptor-related factor 1 may play a dual neuroprotective role in multiple sclerosis by influencing inflammatory and neurodegenerative processes. Future studies elucidating the influence of nuclear receptor-related factor 1 on these processes in multiple sclerosis may cast light onto novel targets that may be modulated to alter clinical outcome.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Brain Commun Year: 2023 Document type: Article Affiliation country: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Brain Commun Year: 2023 Document type: Article Affiliation country: United kingdom