Your browser doesn't support javascript.
loading
Isotopically Enriched Layers for Quantum Computers Formed by 28Si Implantation and Layer Exchange.
Schneider, Ella; England, Jonathan.
Affiliation
  • Schneider E; Surrey Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, United Kingdom.
  • England J; Surrey Ion Beam Centre, Advanced Technology Institute, University of Surrey, Guildford GU2 7XH, United Kingdom.
ACS Appl Mater Interfaces ; 15(17): 21609-21617, 2023 May 03.
Article in En | MEDLINE | ID: mdl-37075328
ABSTRACT
28Si enrichment is crucial for production of group IV semiconductor-based quantum computers. Cryogenically cooled, monocrystalline 28Si is a spin-free, vacuum-like environment where qubits are protected from sources of decoherence that cause loss of quantum information. Currently, 28Si enrichment techniques rely on deposition of centrifuged SiF4 gas, the source of which is not widely available, or bespoke ion implantation methods. Previously, conventional ion implantation into naturalSi substrates has produced heavily oxidized 28Si layers. Here we report on a novel enrichment process involving ion implantation of 28Si into Al films deposited on native-oxide free Si substrates followed by layer exchange crystallization. We measured continuous, oxygen-free epitaxial 28Si enriched to 99.7%. Increases in isotopic enrichment are possible, and improvements in crystal quality, aluminum content, and thickness uniformity are required before the process can be considered viable. TRIDYN models, used to model 30 keV 28Si implants into Al to understand the observed post-implant layers and to investigate the implanted layer exchange process window over different energy and vacuum conditions, showed that the implanted layer exchange process is insensitive to implantation energy and would increase in efficiency with oxygen concentrations in the implanter end-station by reducing sputtering. Required implant fluences are an order of magnitude lower than those required for enrichment by direct 28Si implants into Si and can be chosen to control the final thickness of the enriched layer. We show that implanted layer exchange could potentially produce quantum grade 28Si using conventional semiconductor foundry equipment within production-worthy time scales.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2023 Document type: Article Affiliation country: United kingdom Publication country: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2023 Document type: Article Affiliation country: United kingdom Publication country: EEUU / ESTADOS UNIDOS / ESTADOS UNIDOS DA AMERICA / EUA / UNITED STATES / UNITED STATES OF AMERICA / US / USA