Your browser doesn't support javascript.
loading
Study on synergistic pyrolysis and kinetics of mixed plastics based on spent fluid-catalytic-cracking catalyst.
Wang, Kongshuo; Bian, Huiguang; Lai, Qingxiang; Chen, Yahui; Li, Zhaoyang; Hao, Yingjie; Yan, Lizhi; Wang, Chuansheng; Tian, Xiaolong.
Affiliation
  • Wang K; National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao, 266061, Shandong Province, China.
  • Bian H; Shandong Key Laboratory of Advanced Manufacturing of Polymer Materials, Qingdao, 266061, Shandong Province, China.
  • Lai Q; School of Mechatronics Engineering, Qingdao University of Science and Technology, Shandong, 266061, China.
  • Chen Y; National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao, 266061, Shandong Province, China.
  • Li Z; Shandong Key Laboratory of Advanced Manufacturing of Polymer Materials, Qingdao, 266061, Shandong Province, China.
  • Hao Y; School of Mechatronics Engineering, Qingdao University of Science and Technology, Shandong, 266061, China.
  • Yan L; National Engineering Laboratory of Advanced Tire Equipment and Key Materials, Qingdao University of Science and Technology, Qingdao, 266061, Shandong Province, China.
  • Wang C; Shandong Key Laboratory of Advanced Manufacturing of Polymer Materials, Qingdao, 266061, Shandong Province, China.
  • Tian X; School of Mechatronics Engineering, Qingdao University of Science and Technology, Shandong, 266061, China.
Environ Sci Pollut Res Int ; 30(25): 66665-66682, 2023 May.
Article in En | MEDLINE | ID: mdl-37099103
At present, disposable plastic products such as plastic packaging are very common in our daily life. These products are extremely easy to cause serious damage to the soil and marine environment due to their short design and service life, difficulties in degradation, or long degradation cycles. Thermochemical method (pyrolysis or catalytic pyrolysis) is an efficient and environmentally friendly way to treat plastic waste. In order to further reduce the energy consumption of plastic pyrolysis and improve the recycling rate of spent fluid catalytic cracking (FCC) catalysts, we adopt the "waste-to-waste" approach to apply the spent FCC catalysts as catalysts in the catalytic pyrolysis of plastics, exploring the pyrolysis characteristics, kinetic parameters, and synergistic effects between different typical plastics (polypropylene, low-density polyethylene, polystyrene). The experimental results show that the spent FCC catalysts used in the catalytic pyrolysis of plastics are beneficial to reduce the overall pyrolysis temperature and activation energy, in which the maximum weight loss temperature decreases by about 12 â„ƒ and the activation energy decreases by about 13%. The activity of spent FCC catalysts is improved after modification by microwave and ultrasonic, which further improve the catalytic efficiency and reduce the energy consumption of pyrolysis. The co-pyrolysis of mixed plastics is dominated by positive synergistic effect, which is conducive to improving the thermal degradation rate and shortening the pyrolysis time. This study provides relevant theoretical support for the resource application of spent FCC catalysts and "waste-to-waste" treatment of plastic waste.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plastics / Pyrolysis Language: En Journal: Environ Sci Pollut Res Int Journal subject: SAUDE AMBIENTAL / TOXICOLOGIA Year: 2023 Document type: Article Affiliation country: China Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Plastics / Pyrolysis Language: En Journal: Environ Sci Pollut Res Int Journal subject: SAUDE AMBIENTAL / TOXICOLOGIA Year: 2023 Document type: Article Affiliation country: China Country of publication: Germany