Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies.
Nat Commun
; 14(1): 2389, 2023 04 25.
Article
in En
| MEDLINE
| ID: mdl-37185622
Antibodies have the capacity to bind a diverse set of antigens, and they have become critical therapeutics and diagnostic molecules. The binding of antibodies is facilitated by a set of six hypervariable loops that are diversified through genetic recombination and mutation. Even with recent advances, accurate structural prediction of these loops remains a challenge. Here, we present IgFold, a fast deep learning method for antibody structure prediction. IgFold consists of a pre-trained language model trained on 558 million natural antibody sequences followed by graph networks that directly predict backbone atom coordinates. IgFold predicts structures of similar or better quality than alternative methods (including AlphaFold) in significantly less time (under 25 s). Accurate structure prediction on this timescale makes possible avenues of investigation that were previously infeasible. As a demonstration of IgFold's capabilities, we predicted structures for 1.4 million paired antibody sequences, providing structural insights to 500-fold more antibodies than have experimentally determined structures.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Deep Learning
Type of study:
Prognostic_studies
/
Risk_factors_studies
Language:
En
Journal:
Nat Commun
Journal subject:
BIOLOGIA
/
CIENCIA
Year:
2023
Document type:
Article
Affiliation country:
United States
Country of publication:
United kingdom