Your browser doesn't support javascript.
loading
Integrated membrane-free thermal flow sensor for silicon-on-glass microfluidics.
Ryzhkov, Vitaly V; Echeistov, Vladimir V; Zverev, Aleksandr V; Baklykov, Dmitry A; Konstantinova, Tatyana; Lotkov, Evgeny S; Ryazantcev, Pavel G; Sh Alibekov, Ruslan; Kuguk, Aleksey K; Aleksandrov, Andrey R; Krasko, Elisey S; Barbasheva, Anastasiya A; Ryzhikov, Ilya A; Rodionov, Ilya A.
Affiliation
  • Ryzhkov VV; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia. irodionov@bmstu.ru.
  • Echeistov VV; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia. irodionov@bmstu.ru.
  • Zverev AV; Dukhov Research Institute of Automatics, Moscow, 127055, Russia.
  • Baklykov DA; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia. irodionov@bmstu.ru.
  • Konstantinova T; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia. irodionov@bmstu.ru.
  • Lotkov ES; Dukhov Research Institute of Automatics, Moscow, 127055, Russia.
  • Ryazantcev PG; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia. irodionov@bmstu.ru.
  • Sh Alibekov R; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia. irodionov@bmstu.ru.
  • Kuguk AK; Dukhov Research Institute of Automatics, Moscow, 127055, Russia.
  • Aleksandrov AR; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia. irodionov@bmstu.ru.
  • Krasko ES; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia. irodionov@bmstu.ru.
  • Barbasheva AA; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia. irodionov@bmstu.ru.
  • Ryzhikov IA; Dukhov Research Institute of Automatics, Moscow, 127055, Russia.
  • Rodionov IA; FMN Laboratory, Bauman Moscow State Technical University, Moscow, 105005, Russia. irodionov@bmstu.ru.
Lab Chip ; 23(12): 2789-2797, 2023 Jun 13.
Article in En | MEDLINE | ID: mdl-37198997
Lab-on-a-chip (LOC) forms the basis of new-generation portable analytical systems. LOC allows the manipulation of ultralow flows of liquid reagents and multistep reactions on a microfluidic chip, which requires a robust and precise instrument to control the flow of liquids on a chip. However, commercially available flow meters appear to be a standalone option adding a significant dead volume of tubes for connection to the chip. Furthermore, most of them cannot be fabricated within the same technological cycle as microfluidic channels. Here, we report on a membrane-free microfluidic thermal flow sensor (MTFS) that can be integrated into a silicon-glass microfluidic chip with a microchannel topology. We propose a membrane-free design with thin-film thermo-resistive sensitive elements isolated from microfluidic channels and a 4'' wafer silicon-glass fabrication route. It ensures MTFS compatibility with corrosive liquids, which is critically important for biological applications. MTFS design rules for the best sensitivity and measurement range are proposed. A method for automated thermo-resistive sensitive element calibration is described. The device parameters are experimentally tested for hundreds of hours with a reference Coriolis flow sensor demonstrating a relative flow error of less than 5% within the range of 2-30 µL min-1 along with a sub-second time response.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Lab Chip Journal subject: BIOTECNOLOGIA / QUIMICA Year: 2023 Document type: Article Affiliation country: RUSSIA Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Lab Chip Journal subject: BIOTECNOLOGIA / QUIMICA Year: 2023 Document type: Article Affiliation country: RUSSIA Country of publication: United kingdom