Your browser doesn't support javascript.
loading
Integrated lactic acid production from lignocellulosic agricultural wastes under thermal conditions.
Liu, Ya-Jun; Zhang, Yuedong; Chi, Fang; Chen, Chaoyang; Wan, Weijian; Feng, Yingang; Song, Xiaojin; Cui, Qiu.
Affiliation
  • Liu YJ; CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian Na
  • Zhang Y; CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian Na
  • Chi F; CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian Na
  • Chen C; CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian Na
  • Wan W; CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian Na
  • Feng Y; CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian Na
  • Song X; CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian Na
  • Cui Q; CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; Dalian Na
J Environ Manage ; 342: 118281, 2023 Sep 15.
Article in En | MEDLINE | ID: mdl-37290309
ABSTRACT
The production of lactic acid (LA) from agricultural wastes attracts great attention because of the sustainability and abundance of lignocellulosic feedstocks, as well as the increasing demand for biodegradable polylactic acid. In this study, we isolated a thermophilic strain Geobacillus stearothermophilus 2H-3 for use in robust production of L-(+)LA under the optimal conditions of 60 °C, pH 6.5, which were consistent with the whole-cell-based consolidated bio-saccharification (CBS) process. Sugar-rich CBS hydrolysates derived from various agricultural wastes, including corn stover, corncob residue, and wheat straw, were used as the carbon sources for 2H-3 fermentation by directly inoculating 2H-3 cells into the CBS system, without intermediate sterilization, nutrient supplementation, or adjustment of fermentation conditions. Thus, we successfully combined two whole-cell-based steps into a one-pot successive fermentation process to efficiently produce LA with high optical purity (99.5%), titer (51.36 g/L), and yield (0.74 g/gbiomass). This study provides a promising strategy for LA production from lignocellulose through CBS and 2H-3 fermentation integration.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Lactic Acid / Lignin Language: En Journal: J Environ Manage Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Lactic Acid / Lignin Language: En Journal: J Environ Manage Year: 2023 Document type: Article