CircUTRN24/miR-483-3p/IGF-1 Regulates Autophagy Mediated Liver Fibrosis in Biliary Atresia.
Mol Biotechnol
; 2023 Jun 27.
Article
in En
| MEDLINE
| ID: mdl-37369954
Biliary atresia (BA) is a rare neonatal cholestatic disease that presents with a marked bile duct reaction and rapid fibrotic development. Our earlier research has shown that circUTRN24 is highly elevated in BA, but the exact molecular mechanism is still unknown. This study attempted to investigate whether circUTRN24 induces BA liver fibrosis through regulation of autophagy and to elucidate its molecular mechanism. Using TGF-ß-treated hepatic stellate cells (HSC) LX-2, we created a liver fibrosis model. qRT-PCR was used to analyze the expression of circUTRN24, miR-483-3p, and IGF-1. Western blot analysis was used to assess the expression of IGF-1, HSC activation-related proteins, and autophagy-related proteins. The TGF-ß-induced LX-2 cell fibrosis model was then supplemented with circUTRN24 siRNA, miR-483-3p mimics, and the autophagy activator Rapamycin, and functional rescue tests were carried out to investigate the role of circUTRN24, miR-483-3p, and autophagy in BA liver fibrosis. Using a luciferase reporter assay, a direct interaction between miR-483-3p and circUTRN24 or IGF-1 was discovered. With the increase of TGF-ß treatment concentration, circUTRN24 expression also gradually increased, as did HSC activation and autophagy-related protein. si-circUTRN24 significantly decreased circUTRN24 expression and inhibited HSC activation and autophagy, which was reversed by Rapamycin. Through bioinformatics prediction and validation, we found circUTRN24 might act through miR-483-3p targeting IGF-1 in the autophagy-related mTOR pathway. Furthermore, miR-483-3p mimics significantly increased miR-483-3p expression and inhibited HSC activation and autophagy, which were reversed by Rapamycin. Functional rescue experiments showed that si-circUTRN24 inhibited circUTRN24 and IGF-1 expressions and promoted miR-483-3p expression, while the miR-483-3p inhibitor abolished these effects. These findings imply that circUTRN24/miR-483-3p/IGF-1 axis mediated LX-2 cell fibrosis by regulating autophagy.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Type of study:
Prognostic_studies
Language:
En
Journal:
Mol Biotechnol
Journal subject:
BIOLOGIA MOLECULAR
/
BIOTECNOLOGIA
Year:
2023
Document type:
Article
Affiliation country:
China
Country of publication:
Switzerland