Your browser doesn't support javascript.
loading
Image quality assessment using deep learning in high b-value diffusion-weighted breast MRI.
Kapsner, Lorenz A; Balbach, Eva L; Folle, Lukas; Laun, Frederik B; Nagel, Armin M; Liebert, Andrzej; Emons, Julius; Ohlmeyer, Sabine; Uder, Michael; Wenkel, Evelyn; Bickelhaupt, Sebastian.
Affiliation
  • Kapsner LA; Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany. lorenz.kapsner@uk-erlangen.de.
  • Balbach EL; Medical Center for Information and Communication Technology, Universitätsklinikum Erlangen, Krankenhausstraße 12, 91054, Erlangen, Germany. lorenz.kapsner@uk-erlangen.de.
  • Folle L; Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany.
  • Laun FB; Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Martensstraße 3, 91058, Erlangen, Germany.
  • Nagel AM; Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany.
  • Liebert A; Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany.
  • Emons J; Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany.
  • Ohlmeyer S; Department of Obstetrics and Gynaecology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsstraße 21-23, 91054, Erlangen, Germany.
  • Uder M; Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany.
  • Wenkel E; Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany.
  • Bickelhaupt S; Institute of Radiology, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Maximiliansplatz 3, 91054, Erlangen, Germany.
Sci Rep ; 13(1): 10549, 2023 06 29.
Article in En | MEDLINE | ID: mdl-37386021
The objective of this IRB approved retrospective study was to apply deep learning to identify magnetic resonance imaging (MRI) artifacts on maximum intensity projections (MIP) of the breast, which were derived from diffusion weighted imaging (DWI) protocols. The dataset consisted of 1309 clinically indicated breast MRI examinations of 1158 individuals (median age [IQR]: 50 years [16.75 years]) acquired between March 2017 and June 2020, in which a DWI sequence with a high b-value equal to 1500 s/mm2 was acquired. From these, 2D MIP images were computed and the left and right breast were cropped out as regions of interest (ROI). The presence of MRI image artifacts on the ROIs was rated by three independent observers. Artifact prevalence in the dataset was 37% (961 out of 2618 images). A DenseNet was trained with a fivefold cross-validation to identify artifacts on these images. In an independent holdout test dataset (n = 350 images) artifacts were detected by the neural network with an area under the precision-recall curve of 0.921 and a positive predictive value of 0.981. Our results show that a deep learning algorithm is capable to identify MRI artifacts in breast DWI-derived MIPs, which could help to improve quality assurance approaches for DWI sequences of breast examinations in the future.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Deep Learning Type of study: Guideline / Observational_studies / Risk_factors_studies Limits: Humans / Middle aged Language: En Journal: Sci Rep Year: 2023 Document type: Article Affiliation country: Germany Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Deep Learning Type of study: Guideline / Observational_studies / Risk_factors_studies Limits: Humans / Middle aged Language: En Journal: Sci Rep Year: 2023 Document type: Article Affiliation country: Germany Country of publication: United kingdom