Your browser doesn't support javascript.
loading
Flexible Ag-S-Te System with Promising Room-Temperature Thermoelectric Performance.
Li, Zhili; Zhang, Jiye; Luo, Pengfei; Chen, Jiayi; Huang, Bowen; Sun, Yuzhe; Luo, Jun.
Affiliation
  • Li Z; School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
  • Zhang J; School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
  • Luo P; School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
  • Chen J; School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
  • Huang B; School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
  • Sun Y; Materials Genome Institute, Shanghai University, Shanghai 200444, China.
  • Luo J; School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China.
ACS Appl Mater Interfaces ; 15(28): 33605-33611, 2023 Jul 19.
Article in En | MEDLINE | ID: mdl-37392426
Silver chalcogenides demonstrate great potential as flexible thermoelectric materials due to their excellent ductility and tunable electrical and thermal transport properties. In this work, we report that the amorphous/crystalline phase ratio and thermoelectric properties of the Ag2SxTe1-x (x = 0.55-0.75) samples can be modified by altering the S content. The room-temperature power factor of the Ag2S0.55Te0.45 sample is 4.9 µW cm-1 K-2, and a higher power factor can be achieved by decreasing the carrier concentration as predicted by the single parabolic band model. The addition of a small amount of excessive Te into Ag2S0.55Te0.45 (Ag2S0.55Te0.45+y) not only enhances the power factor by decreasing the carrier concentration but also reduces the total thermal conductivity due to decreased electronic thermal conductivity. Owing to the effectively optimized carrier concentration, the thermoelectric power factor and dimensionless figure of merit zT of the sample with y = 0.007 reaches, respectively, 6.2 µW cm-1 K-2 and 0.39, while the excellent plastic deformability is well maintained, demonstrating its promising potential as a flexible thermoelectric material at room temperature.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2023 Document type: Article Affiliation country: China Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: ACS Appl Mater Interfaces Journal subject: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Year: 2023 Document type: Article Affiliation country: China Country of publication: United States