Effects of editing DFR genes on flowers, leaves, and roots of tobacco.
BMC Plant Biol
; 23(1): 349, 2023 Jul 05.
Article
in En
| MEDLINE
| ID: mdl-37407922
BACKGROUND: DFR is a crucial structural gene in plant flavonoid and polyphenol metabolism, and DFR knockout (DFR-KO) plants may have increased biomass accumulation. It is uncertain whether DFR-KO has comparable effects in tobacco and what the molecular mechanism is. We employed the CRISPR/Cas9 method to generate a knockout homozygous construct and collected samples from various developmental phases for transcriptome and metabolome detection and analysis. RESULTS: DFR-KO turned tobacco blossoms white on homozygous tobacco (Nicotiana tabacum) plants with both NtDFR1 and NtDFR2 knockout. RNA-seq investigation of anthesis leaf (LF), anthesis flower (FF), mature leaf (LM), and mature root (RM) variations in wild-type (CK) and DFR-KO lines revealed 2898, 276, 311, and 101 differentially expressed genes (DEGs), respectively. DFR-KO primarily affected leaves during anthesis. According to KEGG and GSEA studies, DFR-KO lines upregulated photosynthetic pathway carbon fixation and downregulated photosystem I and II genes. DFR-KO may diminish tobacco anthesis leaf photosynthetic light reaction but boost dark reaction carbon fixation. DFR-KO lowered the expression of pathway-related genes in LF, such as oxidative phosphorylation and proteasome, while boosting those in the plant-pathogen interaction and MAPK signaling pathways, indicating that it may increase biological stress resistance. DFR-KO greatly boosted the expression of other structural genes involved in phenylpropanoid production in FF, which may account for metabolite accumulation. The metabolome showed that LF overexpressed 8 flavonoid metabolites and FF downregulated 24 flavone metabolites. In DFR-KO LF, proteasome-related genes downregulated 16 amino acid metabolites and reduced free amino acids. Furthermore, the DEG analysis on LM revealed that the impact of DFR-KO on tobacco growth may progressively diminish with time. CONCLUSION: The broad impact of DFR-KO on different phases and organs of tobacco development was thoroughly and methodically investigated in this research. DFR-KO decreased catabolism and photosynthetic light reactions in leaves during the flowering stage while increasing carbon fixation and disease resistance pathways. However, the impact of DFR-KO on tobacco growth steadily declined as it grew and matured, and transcriptional and metabolic modifications were consistent. This work offers a fresh insight and theoretical foundation for tobacco breeding and the development of gene-edited strains.
Key words
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Nicotiana
/
Proteasome Endopeptidase Complex
Language:
En
Journal:
BMC Plant Biol
Journal subject:
BOTANICA
Year:
2023
Document type:
Article
Affiliation country:
China
Country of publication:
United kingdom