Your browser doesn't support javascript.
loading
A neural cell adhesion molecule from oyster Crassostrea gigas: Molecular identification and immune functional characterization.
Qiao, Xue; Liu, Conghui; Wang, Weilin; Yang, Chuanyan; Li, Meijia; Yi, Qilin; Kong, Ning; Qiu, Limei; Liu, Xiyang; Wang, Lingling; Song, Linsheng.
Affiliation
  • Qiao X; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
  • Liu C; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
  • Wang W; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao
  • Yang C; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dal
  • Li M; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
  • Yi Q; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao
  • Kong N; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao
  • Qiu L; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
  • Liu X; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian 116023, China.
  • Wang L; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao
  • Song L; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao
Int J Biol Macromol ; 247: 125756, 2023 Aug 30.
Article in En | MEDLINE | ID: mdl-37429340
ABSTRACT
Neural cell adhesion molecules (NCAMs) are large cell-surface glycoproteins playing important roles in cell-cell and cell-extracellular matrix interactions in nervous system. Recent study identified a homologue of NCAM (CgNCAM) from the Pacific oyster Crassostrea gigas. Its ORF was of 2634 bp which encodes a protein (877 amino acids) consisting of five immunoglobulin domains and two fibronectin type III domains. CgNCAM transcripts were broadly distributed in oyster tissues especially in mantle, labial palp and haemolymph. CgNCAM showed up-regulated expression in haemocytes of oysters after Vibrio splendidus and Staphylococcus aureus stimulation. The recombinant CgNCAM protein (rCgNCAM) was able to bind manose, lipopolysaccharide and glucan, as well as different microbes including Gram-negative bacteria and fungi. rCgNCAM displayed bacterial agglutination and hemagglutination activity. CgNCAM improved the phagocytosis of haemocytes towards V. splendidus by regulating the expression of CgIntegrin, CgRho J and CgMAPKK. Moreover, CgNCAM was involved in the extracellular trap establishment of haemocytes after V. splendidus stimulation. The results collectively indicated that CgNCAM acted as a recognition receptor executing multiple immune functions to recognize and eliminate invading microorganisms in innate immunity of oysters.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Crassostrea Type of study: Diagnostic_studies Limits: Animals Language: En Journal: Int J Biol Macromol Year: 2023 Document type: Article Affiliation country: China Publication country: HOLANDA / HOLLAND / NETHERLANDS / NL / PAISES BAJOS / THE NETHERLANDS

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Crassostrea Type of study: Diagnostic_studies Limits: Animals Language: En Journal: Int J Biol Macromol Year: 2023 Document type: Article Affiliation country: China Publication country: HOLANDA / HOLLAND / NETHERLANDS / NL / PAISES BAJOS / THE NETHERLANDS