Your browser doesn't support javascript.
loading
Direct tracking of ultrafast proton transfer in water dimers.
Schnorr, Kirsten; Belina, Michal; Augustin, Sven; Lindenblatt, Hannes; Liu, Yifan; Meister, Severin; Pfeifer, Thomas; Schmid, Georg; Treusch, Rolf; Trost, Florian; Slavícek, Petr; Moshammer, Robert.
Affiliation
  • Schnorr K; Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany.
  • Belina M; Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland.
  • Augustin S; Department of Physical Chemistry, University of Chemistry and Technology, Technická 5, 16628 Prague 6, Czech Republic.
  • Lindenblatt H; Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany.
  • Liu Y; Paul Scherrer Institut, Forschungsstrasse 111, 5232 Villigen, Switzerland.
  • Meister S; Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany.
  • Pfeifer T; Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany.
  • Schmid G; Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany.
  • Treusch R; Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany.
  • Trost F; Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany.
  • Slavícek P; Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
  • Moshammer R; Max Planck Institute for Nuclear Physics, Saupfercheckweg 1, 69117 Heidelberg, Germany.
Sci Adv ; 9(28): eadg7864, 2023 07 14.
Article in En | MEDLINE | ID: mdl-37436977
ABSTRACT
Upon ionization, water forms a highly acidic radical cation H2O+· that undergoes ultrafast proton transfer (PT)-a pivotal step in water radiation chemistry, initiating the production of reactive H3O+, OH[Formula see text] radicals, and a (hydrated) electron. Until recently, the time scales, mechanisms, and state-dependent reactivity of ultrafast PT could not be directly traced. Here, we investigate PT in water dimers using time-resolved ion coincidence spectroscopy applying a free-electron laser. An extreme ultraviolet (XUV) pump photon initiates PT, and only dimers that have undergone PT at the instance of the ionizing XUV probe photon result in distinct H3O+ + OH+ pairs. By tracking the delay-dependent yield and kinetic energy release of these ion pairs, we measure a PT time of (55 ± 20) femtoseconds and image the geometrical rearrangement of the dimer cations during and after PT. Our direct measurement shows good agreement with nonadiabatic dynamics simulations for the initial PT and allows us to benchmark nonadiabatic theory.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Adv Year: 2023 Document type: Article Affiliation country: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Adv Year: 2023 Document type: Article Affiliation country: Germany