Your browser doesn't support javascript.
loading
[Atmospheric Ozone Concentration Prediction in Nanjing Based on LightGBM].
Zhu, Jia-Ying; An, Jun-Lin; Feng, Yue-Zheng; He, Jie; Zhang, Yu-Xin; Wang, Jun-Xiu.
Affiliation
  • Zhu JY; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China.
  • An JL; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China.
  • Feng YZ; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China.
  • He J; Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological Administration, Nanjing University of Information Science and Technology, Nanjing 210044, China.
  • Zhang YX; Weather Modification Office of Qinghai Province, Xining 810000, China.
  • Wang JX; Hohhot Meteorological Bureau, Hohhot 010020, China.
Huan Jing Ke Xue ; 44(7): 3685-3694, 2023 Jul 08.
Article in Zh | MEDLINE | ID: mdl-37438268
Based on the air quality data and conventional meteorological data of the Nanjing Region from January 2015 to December 2016, to analyze the characteristics of O3 concentration changes in the Nanjing Region, a light gradient boosting machine (LightGBM) model was established to predict O3 concentration. The model was compared with three machine learning methods that are commonly used in air quality prediction, including support vector machine, recurrent neural network, and random forest methods, to verify its effectiveness and feasibility. Finally, the performance of the prediction model was analyzed under different meteorological conditions. The results showed that the variation in O3 concentration in Nanjing had significant seasonal differences and was affected by a combination of its pre-concentration, meteorological factors, and other air pollutant concentrations. The LightGBM model predicted the ground-level O3 concentration in the Nanjing area more precisely to a large extent (R2=0.92), and the model outperformed other models in prediction accuracy and computational efficiency. In particular, the model showed a significantly higher prediction accuracy and stability than that of other models under a high-temperature condition that was more likely prone to ozone pollution. The LightGBM model was characterized by its high prediction accuracy, good stability, satisfactory generalization ability, and short operation time, which broaden its application prospect in O3 concentration prediction.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies / Risk_factors_studies Language: Zh Journal: Huan Jing Ke Xue Year: 2023 Document type: Article Affiliation country: China Country of publication: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies / Risk_factors_studies Language: Zh Journal: Huan Jing Ke Xue Year: 2023 Document type: Article Affiliation country: China Country of publication: China