Your browser doesn't support javascript.
loading
Photodissociation dynamics of SO2 between 193 and 201 nm.
Luo, Zijie; Zhang, Zhaoxue; Yang, Shuaikang; Zhao, Yarui; Li, Zhenxing; He, Zhigang; Chang, Yao; Che, Li; Yuan, Kaijun; Yang, Xueming.
Affiliation
  • Luo Z; Marine Engineering College, Dalian Maritime University, Liaoning 116026, China.
  • Zhang Z; State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Yang S; State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Zhao Y; State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Li Z; State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • He Z; State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Chang Y; State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Che L; State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
  • Yuan K; Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, China.
  • Yang X; State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
J Chem Phys ; 159(2)2023 Jul 14.
Article in En | MEDLINE | ID: mdl-37439466
The nonadiabatic interactions between the C̃ state and neighboring electronic states of SO2 have attracted much attention; however, the predissociation mechanisms are not yet completely understood. In this work, the predissociation dynamics of SO2 via its C̃ state have been investigated at λ = 193-201 nm by using the time-sliced velocity map ion imaging technique. The translational energy distributions and the branching ratios of the O(3PJ=2,1,0) spin-orbit products at six photolysis wavelengths have been acquired. The SO(3Σ-) product population gradually decreases in v = 0 and increases in v = 2 as the photolysis wavelength decreases. The branching ratios of O(3P J=2,1,0) products are almost similar at most wavelengths, except at 194.8 nm. Our data suggest that the predissociation between 193 and 201 nm is via an avoided crossing between the C̃ state and the repulsive triplet 23A' state. The state-to-state dynamical pictures shown in this work provide a rigorous test of the potential energy surfaces (PESs) of the SO2 and the nonadiabatic couplings between these PESs.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Chem Phys Year: 2023 Document type: Article Affiliation country: China Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Chem Phys Year: 2023 Document type: Article Affiliation country: China Country of publication: United States