Your browser doesn't support javascript.
loading
Genome-wide identification and characterization of SRLK gene family reveal their roles in self-incompatibility of Erigeron breviscapus.
Xiang, Chenggang; Tao, Hongzheng; Wang, Tiantao; Meng, Hengling; Guan, Dejun; Li, He; Wei, Xiang; Zhang, Wei.
Affiliation
  • Xiang C; Honghe University, Mengzi, 661100, Yunnan, China.
  • Tao H; Honghe University, Mengzi, 661100, Yunnan, China.
  • Wang T; Honghe University, Mengzi, 661100, Yunnan, China.
  • Meng H; Honghe University, Mengzi, 661100, Yunnan, China.
  • Guan D; Yunnan Zesheng Biotechnology Co., Ltd. Luxi, Qujing, 652400, Yunnan, China.
  • Li H; Honghe University, Mengzi, 661100, Yunnan, China.
  • Wei X; Honghe University, Mengzi, 661100, Yunnan, China. 302719308@126.com.
  • Zhang W; Honghe University, Mengzi, 661100, Yunnan, China. zw_biology2@126.com.
BMC Genomics ; 24(1): 402, 2023 Jul 17.
Article in En | MEDLINE | ID: mdl-37460954
ABSTRACT
Self-incompatibility (SI) is a reproductive protection mechanism that plants acquired during evolution to prevent self-recession. As the female determinant of SI specificity, SRK has been shown to be the only recognized gene on the stigma and plays important roles in SI response. Asteraceae is the largest family of dicotyledonous plants, many of which exhibit self-incompatibility. However, systematic studies on SRK gene family in Asteraceae are still limited due to lack of high-quality genomic data. In this study, we performed the first systematic genome-wide identification of S-locus receptor like kinases (SRLKs) in the self-incompatible Asteraceae species, Erigeron breviscapus, which is also a widely used perennial medicinal plant endemic to China.52 SRLK genes were identified in the E. breviscapus genome. Structural analysis revealed that the EbSRLK proteins in E. breviscapus are conserved. SRLK proteins from E. breviscapus and other SI plants are clustered into 7 clades, and the majority of the EbSRLK proteins are distributed in Clade I. Chromosomal and duplication analyses indicate that 65% of the EbSRLK genes belong to tandem repeats and could be divided into six tandem gene clusters. Gene expression patterns obtained in E. breviscapus multiple-tissue RNA-Seq data revealed differential temporal and spatial features of EbSRLK genes. Among these, two EbSRLK genes having high expression levels in tongue flowers were cloned. Subcellular localization assay demonstrated that both of their fused proteins are localized on the plasma membrane. All these results indicated that EbSRLK genes possibly involved in SI response in E. breviscapus. This comprehensive genome-wide study of the SRLK gene family in E. breviscapus provides valuable information for understanding the mechanism of SSI in Asteraceae.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Erigeron Type of study: Diagnostic_studies Country/Region as subject: Asia Language: En Journal: BMC Genomics Journal subject: GENETICA Year: 2023 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Erigeron Type of study: Diagnostic_studies Country/Region as subject: Asia Language: En Journal: BMC Genomics Journal subject: GENETICA Year: 2023 Document type: Article Affiliation country: China