Your browser doesn't support javascript.
loading
Versatile Femtosecond Laser Synchronization for Multiple-Timescale Transient Infrared Spectroscopy.
Helbing, Jan; Hamm, Peter.
Affiliation
  • Helbing J; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
  • Hamm P; Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
J Phys Chem A ; 127(30): 6347-6356, 2023 Aug 03.
Article in En | MEDLINE | ID: mdl-37478282
Several ways to electronically synchronize different types of amplified femtosecond laser systems are presented based on a single freely programmable electronics hardware: arbitrary-detuning asynchronous optical sampling (ADASOPS), as well as actively locking two femtosecond laser oscillators, albeit not necessarily to the same round-trip frequency. They allow us to rapidly probe a very wide range of timescales, from picoseconds to potentially seconds, in a single transient absorption experiment without the need to move any delay stage. Experiments become possible that address a largely unexplored aspect of many photochemical reactions, in particular in the context of photo-catalysis as well as photoactive proteins, where an initial femtosecond trigger very often initiates a long-lasting cascade of follow-up processes. The approach is very versatile and allows us to synchronize very different lasers, such as a Ti:Sa amplifier and a 100 kHz Yb-laser system. The jitter of the synchronization, and therewith the time-resolution in the transient experiment, lies in the range from 1 to 3 ps, depending on the method. For illustration, transient IR measurements of the excited state solvation and decay of a metal carbonyl complex as well as the full reaction cycle of bacteriorhodopsin are shown. The pros and cons of the various methods are discussed, with regard to the scientific question one might want to address, and also with regard to the laser systems that might be already existent in a laser lab.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Phys Chem A Journal subject: QUIMICA Year: 2023 Document type: Article Affiliation country: Switzerland Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Phys Chem A Journal subject: QUIMICA Year: 2023 Document type: Article Affiliation country: Switzerland Country of publication: United States