Your browser doesn't support javascript.
loading
Single-cell sequencing reveals the landscape of the human brain metastatic microenvironment.
Song, Qianqian; Ruiz, Jimmy; Xing, Fei; Lo, Hui-Wen; Craddock, Lou; Pullikuth, Ashok K; Miller, Lance D; Soike, Michael H; O'Neill, Stacey S; Watabe, Kounosuke; Chan, Michael D; Su, Jing.
Affiliation
  • Song Q; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
  • Ruiz J; Hematology & Oncology, Department of Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA. jruiz@wakehealth.edu.
  • Xing F; W.G. (Bill) Hefner Department of Veteran Affairs Medical Center, Salisbury, NC, USA. jruiz@wakehealth.edu.
  • Lo HW; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
  • Craddock L; Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA.
  • Pullikuth AK; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
  • Miller LD; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
  • Soike MH; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
  • O'Neill SS; Hazlerig-Salter Department of Radiation Oncology, University of Alabama-Birmingham Heersink School of Medicine, Birmingham, AL, USA.
  • Watabe K; Department of Pathology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
  • Chan MD; Department of Cancer Biology, Wake Forest University School of Medicine, Winston-Salem, NC, USA.
  • Su J; Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, NC, USA. mchan@wakehealth.edu.
Commun Biol ; 6(1): 760, 2023 07 21.
Article in En | MEDLINE | ID: mdl-37479733
ABSTRACT
Brain metastases is the most common intracranial tumor and account for approximately 20% of all systematic cancer cases. It is a leading cause of death in advanced-stage cancer, resulting in a five-year overall survival rate below 10%. Therefore, there is a critical need to identify effective biomarkers that can support frequent surveillance and promote efficient drug guidance in brain metastasis. Recently, the remarkable breakthroughs in single-cell RNA-sequencing (scRNA-seq) technology have advanced our insights into the tumor microenvironment (TME) at single-cell resolution, which offers the potential to unravel the metastasis-related cellular crosstalk and provides the potential for improving therapeutic effects mediated by multifaceted cellular interactions within TME. In this study, we have applied scRNA-seq and profiled 10,896 cells collected from five brain tumor tissue samples originating from breast and lung cancers. Our analysis reveals the presence of various intratumoral components, including tumor cells, fibroblasts, myeloid cells, stromal cells expressing neural stem cell markers, as well as minor populations of oligodendrocytes and T cells. Interestingly, distinct cellular compositions are observed across different samples, indicating the influence of diverse cellular interactions on the infiltration patterns within the TME. Importantly, we identify tumor-associated fibroblasts in both our in-house dataset and external scRNA-seq datasets. These fibroblasts exhibit high expression of type I collagen genes, dominate cell-cell interactions within the TME via the type I collagen signaling axis, and facilitate the remodeling of the TME to a collagen-I-rich extracellular matrix similar to the original TME at primary sites. Additionally, we observe M1 activation in native microglial cells and infiltrated macrophages, which may contribute to a proinflammatory TME and the upregulation of collagen type I expression in fibroblasts. Furthermore, tumor cell-specific receptors exhibit a significant association with patient survival in both brain metastasis and native glioblastoma cases. Taken together, our comprehensive analyses identify type I collagen-secreting tumor-associated fibroblasts as key mediators in metastatic brain tumors and uncover tumor receptors that are potentially associated with patient survival. These discoveries provide potential biomarkers for effective therapeutic targets and intervention strategies.
Subject(s)

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain Neoplasms / Glioblastoma Type of study: Guideline Limits: Humans Language: En Journal: Commun Biol Year: 2023 Document type: Article Affiliation country: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Brain Neoplasms / Glioblastoma Type of study: Guideline Limits: Humans Language: En Journal: Commun Biol Year: 2023 Document type: Article Affiliation country: United States