Interpretable artificial intelligence in radiology and radiation oncology.
Br J Radiol
; 96(1150): 20230142, 2023 Oct.
Article
in En
| MEDLINE
| ID: mdl-37493248
Artificial intelligence has been introduced to clinical practice, especially radiology and radiation oncology, from image segmentation, diagnosis, treatment planning and prognosis. It is not only crucial to have an accurate artificial intelligence model, but also to understand the internal logic and gain the trust of the experts. This review is intended to provide some insights into core concepts of the interpretability, the state-of-the-art methods for understanding the machine learning models, the evaluation of these methods, identifying some challenges and limits of them, and gives some examples of medical applications.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Main subject:
Radiology
/
Radiation Oncology
Limits:
Humans
Language:
En
Journal:
Br J Radiol
Year:
2023
Document type:
Article
Affiliation country:
United States
Country of publication:
United kingdom