Photo-actuators via epitaxial growth of microcrystal arrays in polymer membranes.
Nat Mater
; 22(9): 1152-1159, 2023 Sep.
Article
in En
| MEDLINE
| ID: mdl-37500960
Photomechanical crystals composed of three-dimensionally ordered and densely packed photochromes hold promise for high-performance photochemical actuators. However, bulk crystals with high structural ordering are severely limited in their flexibility, resulting in poor processibility and a tendency to fragment upon light exposure, while previous nano- or microcrystalline composites have lacked global alignment. Here we demonstrate a photon-fuelled macroscopic actuator consisting of diarylethene microcrystals in a polyethylene terephthalate host matrix. These microcrystals survive large deformations and show a high degree of three-dimensional ordering dictated by the anisotropic polyethylene terephthalate, which critically also has a similar stiffness. Overall, these ordered and compliant composites exhibit rapid response times, sustain a performance of over at least hundreds of cycles and generate work densities exceeding those of single crystals. Our composites represent the state-of-the-art for photochemical actuators and enable properties unattainable by single crystals, such as controllable, reversible and abrupt jumping (photosalient behaviour).
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
Nat Mater
Journal subject:
CIENCIA
/
QUIMICA
Year:
2023
Document type:
Article
Affiliation country:
United States
Country of publication:
United kingdom