Your browser doesn't support javascript.
loading
Biomass-derived carbon dots with light conversion and nutrient provisioning capabilities facilitate plant photosynthesis.
Cheng, Bingxu; Yang, Zhilin; Chen, Feiran; Yue, Le; Cao, Xuesong; Li, Jing; Qian, Hai-Long; Yan, Xiu-Ping; Wang, Chuanxi; Wang, Zhenyu.
Affiliation
  • Cheng B; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu
  • Yang Z; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu
  • Chen F; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu
  • Yue L; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu
  • Cao X; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu
  • Li J; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu
  • Qian HL; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  • Yan XP; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
  • Wang C; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu
  • Wang Z; Institute of Environmental Processes and Pollution Control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu
Sci Total Environ ; 901: 165973, 2023 Nov 25.
Article in En | MEDLINE | ID: mdl-37532034
ABSTRACT
Carbon dots (CDs)-enabled agriculture has been developing rapidly, but small-scale synthesis and high costs hinder the agricultural application of CDs. Herein, biomass-derived carbon dots (B-CDs) were prepared on a gram-level with low cost, and these B-CDs significantly improved crop photosynthesis. The B-CDs, exhibiting small size and blue fluorescence, were absorbed by crops and enhanced photosynthesis via light-harvesting. Foliar application of B-CDs (10 mg·kg-1) could promote chlorophyll synthesis (30-100 %), Ferredoxin (Fd, 40-80 %), Rubisco enzyme (20-110 %) and upregulated gene expression (20-70 %), resulting in higher net photosynthetic rates (130-300 %), dry biomass (160-300 %) and fresh biomass (80-150 %). Further, the B-CDs could increase crop photosynthesis under nutrient deficient conditions, which was attributed to the release of nutrients from B-CDs. Therefore, the B-CDs enhanced the photosynthesis via enhancing light conversion and nutrient supply. This study provides a promising material capable of enhancing photosynthesis for sustainable agriculture production.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2023 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Sci Total Environ Year: 2023 Document type: Article