Your browser doesn't support javascript.
loading
Noncoordinate regulation of the mRNAs encoding cytochromes P-450BNF/MC-B and P-450ISF/BNF-G.
Arch Biochem Biophys ; 244(1): 261-72, 1986 Jan.
Article in En | MEDLINE | ID: mdl-3753838
ABSTRACT
The mRNAs encoding the major polycyclic aromatic hydrocarbon-induced cytochromes P-450 from rat, P-450BNF/MC-B and P-450ISF/BNF-G, were characterized using three classes of recombinant plasmids those complementary to (a) only P-450BNF/MC-B mRNA, (b) only P-450ISF/BNF-G mRNA, and (c) both mRNAs. These classes were identified by hybridization-selected translation and immunoprecipitation using six monoclonal and polyclonal antibodies and were later sequenced to confirm their identity and specificity. These findings indicated that the mRNAs encoding these two P-450s have regions that are unique, as well as regions that are homologous. Hybridization-selected translation also showed that the primary in vitro translation products of the P-450BNF/MC-B and P-450ISF/BNF-G mRNAs are 55 and 52 kDa, respectively, and have both unique and common structural characteristics that can be distinguished immunologically. By Northern hybridization, the P-450BNF/MC-B mRNA was found to be 2900 bases long, while the P-450ISF/BNF-G mRNA was 2100 bases long. Precursors of 3500 and 5200 bases were detected for P-450BNF/MC-B mRNA, while a 3100-base precursor was detected for P-450ISF/BNF-G mRNA. These two mRNAs were induced by beta-naphthoflavone, isosafrole, and 3-methylcholanthrene, but not by phenobarbital. In untreated rats, the P-450BNF/MC-B mRNA was consistently present at very low levels while the P-450ISF/BNF-G mRNA was present in variable amounts, suggesting that the latter mRNA can be induced by dietary or other environmental factors. The kinetics of induction of the P-450BNF/MC-B and P-450ISF/BNF-G mRNAs were measured by dot blot hybridization. P-450BNF/MC-B mRNA increased rapidly, reaching half-maximum by 4 h after treatment with 3-methylcholanthrene, while the P-450ISF/BNF-G mRNA increased more slowly, reaching half-maximum after 12 h. The levels of both mRNAs peaked at 24 h, but decreased thereafter at different rates; P-450BNF/MC-B mRNA dropped by about 20% during the next 24 h, while P-450ISF/BNF-G mRNA dropped by 50 to 70%. These differences in the kinetics of induction and the apparent stabilities of the P-450BNF/MC-B and P-450ISF/BNF-G mRNAs, in conjunction with the observed differences in their levels in untreated rats, suggested that these two mRNAs were not coordinately regulated even though they were induced by the same compounds.(ABSTRACT TRUNCATED AT 400 WORDS)
Subject(s)
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: RNA, Messenger / Gene Expression Regulation / Cytochrome P-450 Enzyme System Type of study: Prognostic_studies Limits: Animals Language: En Journal: Arch Biochem Biophys Year: 1986 Document type: Article
Search on Google
Collection: 01-internacional Database: MEDLINE Main subject: RNA, Messenger / Gene Expression Regulation / Cytochrome P-450 Enzyme System Type of study: Prognostic_studies Limits: Animals Language: En Journal: Arch Biochem Biophys Year: 1986 Document type: Article