Your browser doesn't support javascript.
loading
The worsening of skeletal muscle atrophy induced by immobilization at the early stage of remobilization correlates with BNIP3-dependent mitophagy.
Wang, Feng; Zhou, Ting; Zhou, Chen Xu; Zhang, Quan Bing; Wang, Hua; Zhou, Yun.
Affiliation
  • Wang F; Department of Rehabilitation Medicine, the Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, China.
  • Zhou T; Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
  • Zhou CX; Department of Rehabilitation Medicine, the Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, China.
  • Zhang QB; Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
  • Wang H; Department of Rehabilitation Medicine, the Second Affiliated Hospital of Anhui Medical University, No.678 Furong Road, Hefei, 230601, China.
  • Zhou Y; Research Center for Translational Medicine, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China.
BMC Musculoskelet Disord ; 24(1): 632, 2023 Aug 04.
Article in En | MEDLINE | ID: mdl-37542244
BACKGROUND: Recent studies have shown that immobilization enhances reactive oxygen species (ROS) production and mitophagy activity in atrophic skeletal muscle. However, there are relatively few studies examining the biological changes and underlying mechanisms of skeletal muscle during remobilization. In this study, we aimed to investigate the effects of remobilization on skeletal muscle and explore the role of BNIP3-dependent mitophagy in this process. METHODS: Thirty rats were randomly divided into six groups based on immobilization and remobilization time: control (C), immobilization for two weeks (I-2w), and remobilization for one day (R-1d), three days (R-3d), seven days (R-7d), and two weeks (R-2w). At the end of the experimental period, the rectus femoris muscles were removed and weighed, and the measurements were expressed as the ratio of muscle wet weight to body weight (MWW/BW). Sirius Red staining was performed to calculate the values of cross-sectional area (CSA) of rectus femoris. Oxidative fluorescent dihydroethidium was used to evaluate the production of ROS, and the levels of superoxide dismutase (SOD) were also detected. The morphological changes of mitochondria and the formation of mitophagosomes in rectus femoris were examined and evaluated by transmission electron microscope. Immunofluorescence was employed to detect the co-localization of BNIP3 and LC3B, while Western blot analysis was performed to quantify the levels of proteins associated with mitophagy and mitochondrial biogenesis. The total ATP content of the rectus femoris was determined to assess mitochondrial function. RESULTS: Within the first three days of remobilization, the rats demonstrated decreased MWW/BW, CSA, and ATP concentration, along with increased ROS production and HIF-1α protein levels in the rectus femoris. Results also indicated that remobilization triggered BNIP3-dependent mitophagy, supported by the accumulation of mitophagosomes, the degradation of mitochondrial proteins (including HSP60 and COX IV), the elevation of BNIP3-dependent mitophagy protein markers (including BNIP3, LC3B-II/LC3B-I, and Beclin-1), and the accumulation of puncta representing co-localization of BNIP3 with LC3B. Additionally, PGC-1α, which is involved in the regulation of mitochondrial biogenesis, was upregulated within the first seven days of remobilization to counteract this adverse effect. CONCLUSION: Our findings suggested that BNIP3-denpendent mitophagy was sustained activated at the early stages of remobilization, and it might contribute to the worsening of skeletal muscle atrophy.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Muscular Atrophy / Mitophagy Type of study: Etiology_studies Limits: Animals Language: En Journal: BMC Musculoskelet Disord Journal subject: FISIOLOGIA / ORTOPEDIA Year: 2023 Document type: Article Affiliation country: China Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Muscular Atrophy / Mitophagy Type of study: Etiology_studies Limits: Animals Language: En Journal: BMC Musculoskelet Disord Journal subject: FISIOLOGIA / ORTOPEDIA Year: 2023 Document type: Article Affiliation country: China Country of publication: United kingdom