Your browser doesn't support javascript.
loading
Malus baccata (Linn.) Borkh polyphenols-loaded nanoparticles ameliorate intestinal health by modulating intestinal function and gut microbiota.
Wang, Lu; Li, Zhen; An, Siying; Zhu, Huipeng; Li, Xiaoyu; Gao, Dawei.
Affiliation
  • Wang L; Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
  • Li Z; Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
  • An S; Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
  • Zhu H; Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
  • Li X; Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China. Electronic address: lixiaoyu@ysu.edu.cn.
  • Gao D; Skate Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China.
Int J Biol Macromol ; 252: 126233, 2023 Dec 01.
Article in En | MEDLINE | ID: mdl-37573904
ABSTRACT
The aim of this study was to construct the nanoparticles based on Hohenbuehelia serotina polysaccharides and mucin for encapsulation of the polyphenols from Malus baccata (Linn.) Borkh (MBP-MC-HSP NPs), and investigate their effects on intestinal function and gut microbiota in mice. The results showed that MBP-MC-HSP NPs did not have any toxic and side effect by determining organ indexes and hematological parameters. The colonic index, colonic length as well as colonic histology were significantly improved by treatment of MBP-MC-HSP NPs. Moreover, MBP-MC-HSP NPs could increase the fecal moisture (84.71 %) and accelerate the intestinal peristalsis (77.87 %), thus reducing the defecation time (1.68 h) of mice at certain extent. Through production of acetic acid, propionic acid and n-butyric acid, MBP-MC-HSP NPs remarkably decreased the pH of colonic feces to maintain intestinal health. 16S rRNA sequencing analysis showed that MBP-MC-HSP NPs could improve the abundances of Lactobacillus, Butyicicoccus and Ruminococcus and suppress the richness of Prevotella, Bifidobacterium and Desulfovibrio, thereby optimizing the structure and composition of gut microbiota. Furthermore, the metabolic profiles of gut microbiota were influenced by MBP-MC-HSP NPs based on prediction of KEGG and COG databases. Overall, this study suggests that MBP-MC-HSP NPs can be developed and utilized as probiotics in the nutritional food field.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Malus / Nanoparticles / Gastrointestinal Microbiome Limits: Animals Language: En Journal: Int J Biol Macromol Year: 2023 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Malus / Nanoparticles / Gastrointestinal Microbiome Limits: Animals Language: En Journal: Int J Biol Macromol Year: 2023 Document type: Article Affiliation country: China