Your browser doesn't support javascript.
loading
Dynamics and Power Balance of Near Unity Target Gain Inertial Confinement Fusion Implosions.
Pak, A; Divol, L; Casey, D T; Khan, S F; Kritcher, A L; Ralph, J E; Tommasini, R; Trosseille, C; Zylstra, A B; Baker, K L; Birge, N W; Bionta, R; Bachmann, B; Dewald, E L; Doeppner, T; Freeman, M S; Fittinghoff, D N; Geppert-Kleinrath, V; Geppert-Kleinrath, H; Hahn, K D; Hohenberger, M; Holder, J; Kerr, S; Kim, Y; Kozioziemski, B; Lamb, K; MacGowan, B J; MacPhee, A G; Meaney, K D; Moore, A S; Schlossberg, D J; Stoupin, S; Volegov, P; Wilde, C; Young, C V; Landen, O L; Town, R P J.
Affiliation
  • Pak A; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Divol L; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Casey DT; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Khan SF; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Kritcher AL; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Ralph JE; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Tommasini R; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Trosseille C; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Zylstra AB; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Baker KL; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Birge NW; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Bionta R; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Bachmann B; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Dewald EL; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Doeppner T; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Freeman MS; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Fittinghoff DN; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Geppert-Kleinrath V; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Geppert-Kleinrath H; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Hahn KD; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Hohenberger M; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Holder J; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Kerr S; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Kim Y; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Kozioziemski B; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Lamb K; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • MacGowan BJ; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • MacPhee AG; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Meaney KD; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Moore AS; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Schlossberg DJ; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Stoupin S; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Volegov P; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Wilde C; Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
  • Young CV; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Landen OL; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
  • Town RPJ; Lawrence Livermore National Laboratory, Livermore, California 94550, USA.
Phys Rev Lett ; 131(6): 065101, 2023 Aug 11.
Article in En | MEDLINE | ID: mdl-37625041
The change in the power balance, temporal dynamics, emission weighted size, temperature, mass, and areal density of inertially confined fusion plasmas have been quantified for experiments that reach target gains up to 0.72. It is observed that as the target gain rises, increased rates of self-heating initially overcome expansion power losses. This leads to reacting plasmas that reach peak fusion production at later times with increased size, temperature, mass and with lower emission weighted areal densities. Analytic models are consistent with the observations and inferences for how these quantities evolve as the rate of fusion self-heating, fusion yield, and target gain increase. At peak fusion production, it is found that as temperatures and target gains rise, the expansion power loss increases to a near constant ratio of the fusion self-heating power. This is consistent with models that indicate that the expansion losses dominate the dynamics in this regime.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2023 Document type: Article Affiliation country: United States Country of publication: United States

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Phys Rev Lett Year: 2023 Document type: Article Affiliation country: United States Country of publication: United States