Synergistic Trimetallic Nanocomposites as Visible-NIR-Sunlight-Driven Photocatalysts for Efficient Artificial Photosynthesis.
ACS Appl Mater Interfaces
; 15(36): 42490-42500, 2023 Sep 13.
Article
in En
| MEDLINE
| ID: mdl-37644704
Here, we report monodispersed tricomponent MnNSs-SnO2@Pt and MnNFs-SnO2@Pt nanocomposites prepared by simultaneous SnO2 and Pt nanodot coating on Mn nanospheres (MnNSs) and Mn nanoflowers (MnNFs) for highly efficient CO2 photoreduction in visible-NIR-sunlight irradiation. MnNFs-SnO2@Pt showed higher efficiency with a quantum yield of 3.21% and a chemical yield of 5.45% for CO2 conversion under visible light irradiation for HCOOH formation with 94% selectivity. Similarly, MnNFs-SnO2@Pt displayed significant photocatalytic efficiency in NIR and sunlight irradiation for HCOOH yield. MnNFs-SnO2@Pt nanocomposites also showed robust morphology and sustained structural stability with shelf-life for at least 1 year and were utilized for at least 10 reaction cycles without losing significant photocatalytic efficiency. The high surface area (94.98 m2/g), efficient electron-hole separation, and Pt-nanodot support in MnNFs--SnO2@Pt contributed to a higher photocatalytic efficacy toward CO2 reduction.
Full text:
1
Collection:
01-internacional
Database:
MEDLINE
Language:
En
Journal:
ACS Appl Mater Interfaces
Journal subject:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Year:
2023
Document type:
Article
Affiliation country:
Korea (South)
Country of publication:
United States