Your browser doesn't support javascript.
loading
Engineering P-Fe2O3-CoP nanosheets for overall freshwater and seawater splitting.
Cui, Zhijie; Yan, Zhibo; Yin, Jie; Wang, Wenpin; Yue, Mei-E; Li, Zhongcheng.
Affiliation
  • Cui Z; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Yan Z; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
  • Yin J; College of Materials Science and Engineering, Liaocheng University, Liaocheng 252059, China.
  • Wang W; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address: wangwp@qust.edu.cn.
  • Yue ME; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China. Electronic address: yuemeie@qust.edu.cn.
  • Li Z; Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Key Laboratory of Advanced Energy Materials Chemis
J Colloid Interface Sci ; 652(Pt B): 1117-1125, 2023 Dec 15.
Article in En | MEDLINE | ID: mdl-37657212
ABSTRACT
Tailoring surface composition and coordinative environment of catalysts in a nano-meter region often influence their chemical performance. It is reported that CoP exhibits a low dissociation ability of H-OH, originating from the poor desorption of intermediate species. Herein, we provide a feasible method to construct P-Fe2O3-CoP nanosheets through a gas-phase phosphorization process. P doping induces the formation of interfacial structure between Fe2O3 and CoP and the generation of defective structures. The resulting P-Fe2O3-CoP nanosheets afford high freshwater/seawater oxidation activity (250/270 mV@10 mA/cm2) in 1 mol/L (M) KOH, which is even lower than commercial RuO2. Compared with CoP||CoP, P-Fe2O3||P-Fe2O3, and Co3O4||Co3O4, the assembled P-Fe2O3-CoP||P-Fe2O3-CoP exhibits the superior water/seawater electrolysis performance with 1.61/1.65 V@10 mA/cm2. The synergistic effect of P doping, defective structure, and heterojunction leads to high water oxidation efficiency and water splitting efficiency.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2023 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Colloid Interface Sci Year: 2023 Document type: Article Affiliation country: China