Your browser doesn't support javascript.
loading
Programmed release of vascular endothelial growth factor and exosome from injectable chitosan nanofibrous microsphere-based PLGA-PEG-PLGA hydrogel for enhanced bone regeneration.
Han, Shuang; Yang, Hongye; Ni, Xiaoqi; Deng, Yunfan; Li, Zubing; Xing, Xin; Du, Minquan.
Affiliation
  • Han S; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
  • Yang H; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
  • Ni X; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
  • Deng Y; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
  • Li Z; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
  • Xing X; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China. Electronic address: xingxin@whu.edu.cn.
  • Du M; The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China. Electronic address: duminquan@whu.edu.cn.
Int J Biol Macromol ; 253(Pt 1): 126721, 2023 Dec 31.
Article in En | MEDLINE | ID: mdl-37673168
ABSTRACT
The healing of large bone defects remains a significant challenge in clinical practice. Accelerating both angiogenesis and osteogenesis can promote effective bone healing. In the natural healing process, angiogenesis precedes osteogenesis, providing a blood supply that supports the subsequent progression of osteogenesis. Developing a biomimetic scaffold that mimics the in vivo environment and promotes the proper sequence of vascularization followed by ossification is crucial for successful bone regeneration. In this study, a novel injectable dual-drug programmed releasing chitosan nanofibrous microsphere-based poly(D, l-lactide-co-glycolide)-b-poly(ethylene glycol)-b-poly(D,l-lactide-co-glycolide) (PLGA-PEG-PLGA) hydrogel is fabricated by incorporating vascular endothelial growth factor (VEGF) and microspheres loaded with dental pulp stem cells-derived exosomes (DPSCs-Exo). Rapid release of VEGF promotes the swift initiation of angiogenesis, while DPSCs-Exo release ensures persistent osteogenesis. Our results demonstrate that chitosan microsphere-based PLGA-PEG-PLGA hydrogel significantly promotes angiogenesis in human umbilical vascular endothelial cells and enhances the osteogenic differentiation of pre-osteoblasts. Furthermore, in vivo transplantation of this injectable chitosan microsphere-based PLGA-PEG-PLGA hydrogel into calvarial bone defects markedly promotes bone formation. Overall, our study provides a promising approach for improving bone regeneration by temporally replicating the behavior of angiogenesis and osteogenesis.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Chitosan / Exosomes / Nanofibers Limits: Humans Language: En Journal: Int J Biol Macromol Year: 2023 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Chitosan / Exosomes / Nanofibers Limits: Humans Language: En Journal: Int J Biol Macromol Year: 2023 Document type: Article Affiliation country: China