Your browser doesn't support javascript.
loading
An integrated approach of machine learning and Bayesian spatial Poisson model for large-scale real-time traffic conflict prediction.
Li, Dongya; Fu, Chuanyun; Sayed, Tarek; Wang, Wei.
Affiliation
  • Li D; School of Transportation, Southeast University, China; Department of Civil Engineering, The University of British Columbia, Canada.
  • Fu C; School of Transportation Science and Engineering, Harbin Institute of Technology, China; Department of Civil Engineering, The University of British Columbia, Canada. Electronic address: fcy1128@mail.ubc.ca.
  • Sayed T; Department of Civil Engineering, The University of British Columbia, Canada.
  • Wang W; School of Transportation, Southeast University, China.
Accid Anal Prev ; 192: 107286, 2023 Nov.
Article in En | MEDLINE | ID: mdl-37690284
The use of traffic conflicts in road safety evaluation is gaining considerable popularity as it plays a vital role in developing a proactive safety management strategy and allowing for real-time safety analysis. This study proposes an integrated approach that combines a machine learning (ML) algorithm and a Bayesian spatial Poisson (BSP) model to conduct large-scale real-time traffic conflict prediction by considering traffic states as the explanatory variables. Traffic conflicts are measured by two indicators, the Time to Collision (TTC) and the Post-Encroachment Time (PET). Based on both TTC and PET, traffic conflict severity is classified into five categories. For each conflict severity category, a binary variable (conflict occurrence) and a count variable (conflict frequency) are developed, respectively. In addition to conflict variables, traffic state parameters are extracted from a large-scale high-resolution trajectory dataset. The traffic parameters include volume, density, speed, and the corresponding space-based and space-time-based measures within a 30-second interval. Eight ML-based classifiers are applied to predict conflict occurrence, and the best classifier is selected. A binary logistic regression is developed to explore the potential linkages between traffic states and conflict occurrence. As well, a resampling technique Borderline-SMOTE is used to mitigate the sparsity caused by the predefined short interval. The BSP model is utilized to predict the specific number of conflicts. Further, the BSP model can also explain the relationship between traffic states and conflict frequency, and thus the significant influencing traffic states are identified. The results show that random forest outperforms the other MLs in terms of conflict occurrence prediction accuracy. Further, the proposed integrated approach achieves a high performance of conflict frequency prediction with RMSE values of 0.1384 âˆ¼ 0.1699, MAPE values of 9.25% ∼ 36.99%, and MAE values of 0.0087 âˆ¼ 0.6398. The finding emphasizes the need for separately predicting the occurrence and frequency of conflicts with different severities.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Algorithms / Accidents, Traffic Type of study: Prognostic_studies / Risk_factors_studies Limits: Humans Language: En Journal: Accid Anal Prev Year: 2023 Document type: Article Affiliation country: Canada Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Algorithms / Accidents, Traffic Type of study: Prognostic_studies / Risk_factors_studies Limits: Humans Language: En Journal: Accid Anal Prev Year: 2023 Document type: Article Affiliation country: Canada Country of publication: United kingdom