Your browser doesn't support javascript.
loading
Minimum conditions for accurate modeling of urea production via co-electrolysis.
Urrego-Ortiz, Ricardo; Builes, Santiago; Illas, Francesc; Bromley, Stefan T; Figueiredo, Marta Costa; Calle-Vallejo, Federico.
Affiliation
  • Urrego-Ortiz R; Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/ Martí i Franquès 1, 08028, Barcelona, Spain.
  • Builes S; Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, University of the Basque Country UPV/EHU, Av. Tolosa 72, 20018, San Sebastián, Spain.
  • Illas F; Escuela de Ciencias Aplicadas e Ingeniería, Universidad EAFIT, Carrera 49 # 7 sur 50, 050022, Medellín, Colombia.
  • Bromley ST; Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/ Martí i Franquès 1, 08028, Barcelona, Spain.
  • Figueiredo MC; Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C/ Martí i Franquès 1, 08028, Barcelona, Spain.
  • Calle-Vallejo F; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08010, Barcelona, Spain.
Commun Chem ; 6(1): 196, 2023 Sep 13.
Article in En | MEDLINE | ID: mdl-37704802
Co-electrolysis of carbon oxides and nitrogen oxides promise to simultaneously help restore the balance of the C and N cycles while producing valuable chemicals such as urea. However, co-electrolysis processes are still largely inefficient and numerous knowledge voids persist. Here, we provide a solid thermodynamic basis for modelling urea production via co-electrolysis. First, we determine the energetics of aqueous urea produced under electrochemical conditions based on experimental data, which enables an accurate assessment of equilibrium potentials and overpotentials. Next, we use density functional theory (DFT) calculations to model various co-electrolysis reactions producing urea. The calculated reaction free energies deviate significantly from experimental values for well-known GGA, meta-GGA and hybrid functionals. These deviations stem from errors in the DFT-calculated energies of molecular reactants and products. In particular, the error for urea is approximately -0.25 ± 0.10 eV. Finally, we show that all these errors introduce large inconsistencies in the calculated free-energy diagrams of urea production via co-electrolysis, such that gas-phase corrections are strongly advised.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Commun Chem Year: 2023 Document type: Article Affiliation country: Spain Country of publication: United kingdom

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: Commun Chem Year: 2023 Document type: Article Affiliation country: Spain Country of publication: United kingdom