Your browser doesn't support javascript.
loading
Deep Learning-Based Feature Extraction from Whole-Body PET/CT Employing Maximum Intensity Projection Images: Preliminary Results of Lung Cancer Data.
Gil, Joonhyung; Choi, Hongyoon; Paeng, Jin Chul; Cheon, Gi Jeong; Kang, Keon Wook.
Affiliation
  • Gil J; Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea.
  • Choi H; Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea.
  • Paeng JC; Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea.
  • Cheon GJ; Department of Nuclear Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea.
  • Kang KW; Department of Nuclear Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea.
Nucl Med Mol Imaging ; 57(5): 216-222, 2023 Oct.
Article in En | MEDLINE | ID: mdl-37720886
Purpose: Deep learning (DL) has been widely used in various medical imaging analyses. Because of the difficulty in processing volume data, it is difficult to train a DL model as an end-to-end approach using PET volume as an input for various purposes including diagnostic classification. We suggest an approach employing two maximum intensity projection (MIP) images generated by whole-body FDG PET volume to employ pre-trained models based on 2-D images. Methods: As a retrospective, proof-of-concept study, 562 [18F]FDG PET/CT images and clinicopathological factors of lung cancer patients were collected. MIP images of anterior and lateral views were used as inputs, and image features were extracted by a pre-trained convolutional neural network (CNN) model, ResNet-50. The relationship between the images was depicted on a parametric 2-D axes map using t-distributed stochastic neighborhood embedding (t-SNE), with clinicopathological factors. Results: A DL-based feature map extracted by two MIP images was embedded by t-SNE. According to the visualization of the t-SNE map, PET images were clustered by clinicopathological features. The representative difference between the clusters of PET patterns according to the posture of a patient was visually identified. This map showed a pattern of clustering according to various clinicopathological factors including sex as well as tumor staging. Conclusion: A 2-D image-based pre-trained model could extract image patterns of whole-body FDG PET volume by using anterior and lateral views of MIP images bypassing the direct use of 3-D PET volume that requires large datasets and resources. We suggest that this approach could be implemented as a backbone model for various applications for whole-body PET image analyses.
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Nucl Med Mol Imaging Year: 2023 Document type: Article Country of publication: Germany

Full text: 1 Collection: 01-internacional Database: MEDLINE Type of study: Prognostic_studies Language: En Journal: Nucl Med Mol Imaging Year: 2023 Document type: Article Country of publication: Germany