Your browser doesn't support javascript.
loading
Near-Atomic-Scale Superfine Alloy Clusters for Ultrastable Acidic Hydrogen Electrocatalysis.
Chen, Guanzhen; Chen, Wen; Lu, Ruihu; Ma, Chao; Zhang, Zedong; Huang, Zeyi; Weng, Jiena; Wang, Ziyun; Han, Yunhu; Huang, Wei.
Affiliation
  • Chen G; Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
  • Chen W; Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
  • Lu R; School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.
  • Ma C; Department of Chemistry, Tsinghua University, Beijing 100084, China.
  • Zhang Z; Department of Chemistry, Tsinghua University, Beijing 100084, China.
  • Huang Z; Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
  • Weng J; Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
  • Wang Z; School of Chemical Sciences, The University of Auckland, Auckland 1010, New Zealand.
  • Han Y; Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
  • Huang W; Institute of Flexible Electronics (IFE) and Frontiers Science Center for Flexible Electronics, Northwestern Polytechnical University, Xi'an 710129, China.
J Am Chem Soc ; 145(40): 22069-22078, 2023 Oct 11.
Article in En | MEDLINE | ID: mdl-37774141
ABSTRACT
As a commercial electrode material for proton-exchange membrane water electrolyzers and fuel cells, Pt-based catalysts still face thorny issues, such as insufficient mass activity, stability, and CO tolerance. Here, we construct a bifunctional catalyst consisting of Pt-Er alloy clusters and atomically dispersed Pt and Er single atoms, which exhibits excellent activity, durability, and CO tolerance of acidic hydrogen evolution and oxidation reactions (HER and HOR). The catalyst possesses a remarkably high mass activity and TOF for HER at 63.9 times and 7.2 times more than that of Pt/C, respectively. More impressively, it can operate stably in the acidic electrolyte at 1000 mA cm-2 for more than 1200 h, thereby confirming its potential for practical applications at the industrial current density. In addition, the catalyst also demonstrates a distinguished HOR performance and outstanding CO tolerance. The synergistic effects of active sites give the catalyst exceptional activity for the hydrogen reaction, while the introduction of Er atoms greatly enhances its stability and CO tolerance. This work provides a promising idea for designing low-Pt-loading acidic HER electrocatalysts that are durable at ampere-level current densities and for constructing HOR catalysts with high CO tolerance.

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Am Chem Soc Year: 2023 Document type: Article Affiliation country: China

Full text: 1 Collection: 01-internacional Database: MEDLINE Language: En Journal: J Am Chem Soc Year: 2023 Document type: Article Affiliation country: China