Your browser doesn't support javascript.
loading
Interface-Stabilized Fiber Sensor for Real-Time Monitoring of Amniotic Fluid During Pregnancy.
Li, Qianming; Li, Dan; Lu, Jiang; Zou, Kuangyi; Wang, Lie; Jiao, Yiding; Wang, Maosen; Gao, Rui; Song, Jie; Li, Yiran; Li, Fangyan; Ji, Jianjian; Wang, Jiacheng; Li, Luhe; Ye, Tingting; He, Er; Chen, Hao; Wang, Yuanzhen; Ren, Junye; Bai, Chenyu; Yang, Shuo; Zhang, Ye.
Affiliation
  • Li Q; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Li D; Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
  • Lu J; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Zou K; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Wang L; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Jiao Y; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Wang M; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Gao R; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Song J; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Li Y; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Li F; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Ji J; Key Laboratory of Inflammation and Immunoregulation, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
  • Wang J; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Li L; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Ye T; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • He E; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Chen H; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Wang Y; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Ren J; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Bai C; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Yang S; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
  • Zhang Y; College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Centre, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University, Nanjing, 210023, C
Adv Mater ; 36(6): e2307726, 2024 Feb.
Article in En | MEDLINE | ID: mdl-37775103
ABSTRACT
Diseases in pregnancy endanger millions of fetuses worldwide every year. The onset of these diseases can be early warned by the dynamic abnormalities of biochemicals in amniotic fluid, thus requiring real-time monitoring. However, when continuously penetrated by detection devices, the amnion is prone to loss of robustness and rupture, which is difficult to regenerate. Here, an interface-stabilized fiber sensor is presented for real-time monitoring of biochemical dynamics in amniotic fluid during pregnancy. The sensor is seamlessly integrated into the amnion through tissue adhesion, amniotic regeneration, and uniform stress distribution, posing no risk to the amniotic fluid environment. The sensor demonstrates a response performance of less than 0.3% fluctuation under complex dynamic conditions and an accuracy of more than 98% from the second to the third trimester. By applying it to early warning of diseases such as intrauterine hypoxia, intrauterine infection, and fetal growth restriction, fetal survival increases to 95% with timely intervention.
Subject(s)
Key words

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Amnion / Amniotic Fluid Limits: Female / Humans / Pregnancy Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article

Full text: 1 Collection: 01-internacional Database: MEDLINE Main subject: Amnion / Amniotic Fluid Limits: Female / Humans / Pregnancy Language: En Journal: Adv Mater Journal subject: BIOFISICA / QUIMICA Year: 2024 Document type: Article